Permafrost thaw and climate warming may decrease the CO2, carbon, and metal concentration in peat soil waters of the Western Siberia Lowland

被引:60
作者
Raudina, T. V. [1 ]
Loiko, S. V. [1 ]
Lim, A. [1 ]
Manasypov, R. M. [1 ,2 ]
Shirokova, L. S. [2 ,3 ]
Istigechev, G. I. [1 ]
Kuzmina, D. M. [1 ]
Kulizhsky, S. P. [1 ]
Vorobyev, S. N. [1 ]
Pokrovsky, O. S. [3 ]
机构
[1] Tomsk State Univ, BIOGEOCLIM Lab, Lenina Ave 36, Tomsk, Russia
[2] Russian Acad Sci, Inst Ecol Problems North, N Laverov Fed Ctr Integrated Arctic Res, Arkhangelsk, Russia
[3] Univ Toulouse, CNRS, UMR 5563, GET, 14 Ave Edouard Belin, F-31400 Toulouse, France
基金
俄罗斯科学基金会;
关键词
Carbon dioxide; Methane; Suprapermafrost flow; Permafrost table; Peat; River; Climate warming; TRACE-ELEMENT CONCENTRATIONS; DISSOLVED ORGANIC-MATTER; ACTIVE-LAYER HYDROLOGY; PORE-WATER; CHEMICAL-COMPOSITION; THERMOKARST LAKES; JURA MOUNTAINS; PEATLANDS; CHEMISTRY; CATCHMENT;
D O I
10.1016/j.scitotenv.2018.04.059
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil porewaters are a vital component of the ecosystem as they are efficient tracers of mineralweathering, plant litter leaching, and nutrient uptake by vegetation. In the permafrost environment, maximal hydraulic connectivity and element transport from soils to rivers and lakes occurs via supra-permafrost flow (i.e. water, gases, suspended matter, and solutes migration over the permafrost table). To assess possible consequences of permafrost thaw and climate warming on carbon and Green House gases (GHG) dynamics we used a "substituting space for time" approach in the largest frozen peatland of theworld. We sampled stagnant supra-permafrost (active layer) waters in peat columns of western Siberia Lowland (WSL) across substantial gradients of climate (-4.0 to -9.1 degrees C mean annual temperature, 360 to 600 mm annual precipitation), active layer thickness (ALT) (N300 to 40 cm), and permafrost coverage (sporadic, discontinuous and continuous). Weanalyzed CO2, CH4, dissolved carbon, and major and trace elements (TE) in 93 soil pit samples corresponding to several typical micro landscapes constituting theWSL territory (peat mounds, hollows, and permafrost subsidences and depressions). We expected a decrease in intensity of DOC and TE mobilization from soil and vegetation litter to the suprapermafrost waterwith increasing permafrost coverage, decreasing annual temperature and ALT along a latitudinal transect from 62.3 degrees N to 67.4 degrees N. However, a number of solutes (DOC, CO2, alkaline earth metals, Si, trivalent and tetravalent hydrolysates, and micronutrients (Mn, Co, Ni, Cu, V, Mo) exhibited a northward increasing trend with highest concentrations within the continuous permafrost zone. Within the "substituting space for time" climate change scenario and northward shift of the permafrost boundary, our results suggest that CO2, DOC, and many major and trace elements will decrease their concentration in soil supra-permafrost waters at the boundary between thaw and frozen layers. As a result, export of DOC and elements from peat soil to lakes and rivers of the WSL (and further to the Arctic Ocean) may decrease. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1004 / 1023
页数:20
相关论文
共 136 条
[31]   Amplified carbon release from vast West Siberian peatlands by 2100 [J].
Frey, KE ;
Smith, LC .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (09) :1-4
[32]   Recent temperature and precipitation increases in West Siberia and their association with the Arctic Oscillation [J].
Frey, KE ;
Smith, LC .
POLAR RESEARCH, 2003, 22 (02) :287-300
[33]   Factors controlling the chemical composition of colloidal and dissolved fractions in soil solutions and the mobility of trace elements in soils [J].
Gangloff, Sophie ;
Stille, Peter ;
Schmitt, Anne-Desiree ;
Chabaux, Francois .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2016, 189 :37-57
[34]   Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic [J].
Gentsch, N. ;
Mikutta, R. ;
Alves, R. J. E. ;
Barta, J. ;
Capek, P. ;
Gittel, A. ;
Hugelius, G. ;
Kuhry, P. ;
Lashchinskiy, N. ;
Palmtag, J. ;
Richter, A. ;
Santruckova, H. ;
Schnecker, J. ;
Shibistova, O. ;
Urich, T. ;
Wild, B. ;
Guggenberger, G. .
BIOGEOSCIENCES, 2015, 12 (14) :4525-4542
[35]   Catchment-scale dissolved carbon concentrations and export estimates across six subarctic streams in northern Sweden [J].
Giesler, R. ;
Lyon, S. W. ;
Morth, C-M. ;
Karlsson, J. ;
Karlsson, E. M. ;
Jantze, E. J. ;
Destouni, G. ;
Humborg, C. .
BIOGEOSCIENCES, 2014, 11 (02) :525-537
[36]   Production of dissolved organic carbon and low-molecular weight organic acids in soil solution driven by recent tree photosynthate [J].
Giesler, Reiner ;
Hogberg, Mona N. ;
Strobel, Bjarne W. ;
Richter, Andreas ;
Nordgren, Anders ;
Hogberg, Peter .
BIOGEOCHEMISTRY, 2007, 84 (01) :1-12
[37]   Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland [J].
Griffiths, Natalie A. ;
Sebestyen, Stephen D. .
WETLANDS, 2016, 36 (06) :1119-1130
[38]   Changing permafrost in a warming world and feedbacks to the Earth system [J].
Grosse, Guido ;
Goetz, Scott ;
McGuire, A. Dave ;
Romanovsky, Vladimir E. ;
Schuur, Edward A. G. .
ENVIRONMENTAL RESEARCH LETTERS, 2016, 11 (04)
[39]   Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate [J].
Guo, Laodong ;
Ping, Chien-Lu ;
Macdonald, Robie W. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (13)
[40]   Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production [J].
Hodgkins, Suzanne B. ;
Tfaily, Malak M. ;
McCalley, Carmody K. ;
Logan, Tyler A. ;
Crill, Patrick M. ;
Saleska, Scott R. ;
Rich, Virginia I. ;
Chanton, Jeffrey P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (16) :5819-5824