Permafrost thaw and climate warming may decrease the CO2, carbon, and metal concentration in peat soil waters of the Western Siberia Lowland

被引:59
作者
Raudina, T. V. [1 ]
Loiko, S. V. [1 ]
Lim, A. [1 ]
Manasypov, R. M. [1 ,2 ]
Shirokova, L. S. [2 ,3 ]
Istigechev, G. I. [1 ]
Kuzmina, D. M. [1 ]
Kulizhsky, S. P. [1 ]
Vorobyev, S. N. [1 ]
Pokrovsky, O. S. [3 ]
机构
[1] Tomsk State Univ, BIOGEOCLIM Lab, Lenina Ave 36, Tomsk, Russia
[2] Russian Acad Sci, Inst Ecol Problems North, N Laverov Fed Ctr Integrated Arctic Res, Arkhangelsk, Russia
[3] Univ Toulouse, CNRS, UMR 5563, GET, 14 Ave Edouard Belin, F-31400 Toulouse, France
基金
俄罗斯科学基金会;
关键词
Carbon dioxide; Methane; Suprapermafrost flow; Permafrost table; Peat; River; Climate warming; TRACE-ELEMENT CONCENTRATIONS; DISSOLVED ORGANIC-MATTER; ACTIVE-LAYER HYDROLOGY; PORE-WATER; CHEMICAL-COMPOSITION; THERMOKARST LAKES; JURA MOUNTAINS; PEATLANDS; CHEMISTRY; CATCHMENT;
D O I
10.1016/j.scitotenv.2018.04.059
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil porewaters are a vital component of the ecosystem as they are efficient tracers of mineralweathering, plant litter leaching, and nutrient uptake by vegetation. In the permafrost environment, maximal hydraulic connectivity and element transport from soils to rivers and lakes occurs via supra-permafrost flow (i.e. water, gases, suspended matter, and solutes migration over the permafrost table). To assess possible consequences of permafrost thaw and climate warming on carbon and Green House gases (GHG) dynamics we used a "substituting space for time" approach in the largest frozen peatland of theworld. We sampled stagnant supra-permafrost (active layer) waters in peat columns of western Siberia Lowland (WSL) across substantial gradients of climate (-4.0 to -9.1 degrees C mean annual temperature, 360 to 600 mm annual precipitation), active layer thickness (ALT) (N300 to 40 cm), and permafrost coverage (sporadic, discontinuous and continuous). Weanalyzed CO2, CH4, dissolved carbon, and major and trace elements (TE) in 93 soil pit samples corresponding to several typical micro landscapes constituting theWSL territory (peat mounds, hollows, and permafrost subsidences and depressions). We expected a decrease in intensity of DOC and TE mobilization from soil and vegetation litter to the suprapermafrost waterwith increasing permafrost coverage, decreasing annual temperature and ALT along a latitudinal transect from 62.3 degrees N to 67.4 degrees N. However, a number of solutes (DOC, CO2, alkaline earth metals, Si, trivalent and tetravalent hydrolysates, and micronutrients (Mn, Co, Ni, Cu, V, Mo) exhibited a northward increasing trend with highest concentrations within the continuous permafrost zone. Within the "substituting space for time" climate change scenario and northward shift of the permafrost boundary, our results suggest that CO2, DOC, and many major and trace elements will decrease their concentration in soil supra-permafrost waters at the boundary between thaw and frozen layers. As a result, export of DOC and elements from peat soil to lakes and rivers of the WSL (and further to the Arctic Ocean) may decrease. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1004 / 1023
页数:20
相关论文
共 136 条
  • [1] Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment
    Abbott, Benjamin W.
    Jones, Jeremy B.
    Schuur, Edward A. G.
    Chapin, F. Stuart, III
    Bowden, William B.
    Bret-Harte, M. Syndonia
    Epstein, Howard E.
    Flannigan, Michael D.
    Harms, Tamara K.
    Hollingsworth, Teresa N.
    Mack, Michelle C.
    McGuire, A. David
    Natali, Susan M.
    Rocha, Adrian V.
    Tank, Suzanne E.
    Turetsky, Merritt R.
    Vonk, Jorien E.
    Wickland, Kimberly P.
    Aiken, George R.
    Alexander, Heather D.
    Amon, Rainer M. W.
    Benscoter, Brian W.
    Bergeron, Yves
    Bishop, Kevin
    Blarquez, Olivier
    Bond-Lamberty, Ben
    Breen, Amy L.
    Buffam, Ishi
    Cai, Yihua
    Carcaillet, Christopher
    Carey, Sean K.
    Chen, Jing M.
    Chen, Han Y. H.
    Christensen, Torben R.
    Cooper, Lee W.
    Cornelissen, J. Hans C.
    de Groot, William J.
    DeLuca, Thomas H.
    Dorrepaal, Ellen
    Fetcher, Ned
    Finlay, Jacques C.
    Forbes, Bruce C.
    French, Nancy H. F.
    Gauthier, Sylvie
    Girardin, Martin P.
    Goetz, Scott J.
    Goldammer, Johann G.
    Gough, Laura
    Grogan, Paul
    Guo, Laodong
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2016, 11 (03):
  • [2] Thawing permafrost and thicker active layers in sub-arctic Sweden
    Akerman, H. Jonas
    Johansson, Margareta
    [J]. PERMAFROST AND PERIGLACIAL PROCESSES, 2008, 19 (03) : 279 - 292
  • [3] Predictive Modeling of Plant Productivity in the Russian Arctic Using Satellite Data
    Anisimov, O. A.
    Zhiltcova, Ye. L.
    Razzhivin, V. Yu.
    [J]. IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2015, 51 (09) : 1051 - 1059
  • [4] Temporal and spatial patterns of modern climatic warming: case study of Northern Eurasia
    Anisimov, Oleg
    Kokorev, Vasily
    Zhil'tsova, Yelena
    [J]. CLIMATIC CHANGE, 2013, 118 (3-4) : 871 - 883
  • [5] [Anonymous], 2001, CIRCUM ARCTIC MAP PE
  • [6] [Anonymous], 1985, VEGETATION COVER W S
  • [7] [Anonymous], [No title captured], DOI [10.5194/bgd-12-10621-2015, DOI 10.5194/BGD-12-10621-2015]
  • [8] [Anonymous], 2017, FRONT EARTH SCI, DOI DOI 10.3389/feart.2017.00002
  • [9] Spatial Variations in Pore-Water Biogeochemistry Greatly Exceed Temporal Changes During Baseflow Conditions in a Boreal River Valley Mire Complex, Northwest Russia
    Avagyan, Armine
    Runkle, Benjamin R. K.
    Hartmann, Jens
    Kutzbach, Lars
    [J]. WETLANDS, 2014, 34 (06) : 1171 - 1182
  • [10] Batuev V. I., 2012, TSPU B, V122, P146