Penalized Linear Regression Methods where the Predictors Have Grouping Effect

被引:0
作者
Jiratchayut, Kanyalin [1 ]
Bumrungsup, Chinnaphong [2 ]
机构
[1] Burapha Univ, Fac Sci & Arts, Chanthaburi Campus, Tha Mai 22170, Chanthaburi, Thailand
[2] Thammasat Univ, Fac Sci & Technol, Dept Math & Stat, Khlong Luang 12120, Pathum Thani, Thailand
来源
THAILAND STATISTICIAN | 2019年 / 17卷 / 02期
关键词
Adaptive elastic net; correlation based penalty; elastic net; SCAD-L-2; variable selection; VARIABLE SELECTION; ELASTIC-NET;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim of this paper is to study the performance of four different penalized linear regression methods: elastic net, adaptive elastic net, L1CP, and SCAD-L-2. Simulation studies show that the adaptive elastic net performs best in variable selection and parameter estimation, while the SCAD-L-2 has prediction accuracy better than the other methods. When sample size is large, the L1CP has a prediction performance close to the prediction accuracy of the SCAD-L-2.
引用
收藏
页码:212 / 222
页数:11
相关论文
共 22 条