Inequalities for the Hadamard weighted geometric mean of positive kernel operators on Banach function spaces

被引:21
作者
Drnovsek, Roman
Peperko, Aljosa
机构
[1] Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia
[2] Univ Ljubljana, Inst Math Phys & Mech, SI-1000 Ljubljana, Slovenia
关键词
Banach function spaces; kernel operators; operator norm; spectral radius; numerical radius; operator inequalities; Hadamard product; Schur product;
D O I
10.1007/s11117-006-0048-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K-1,..., K-n be positive kernel operators on a Banach function space. We prove that the Hadamard weighted geometric mean of K-1,..., K-n, the operator K, satisfies the following inequalities parallel to K parallel to <= parallel to K-1 parallel to(alpha 1)parallel to K-2 parallel to(alpha 2)...parallel to K-n parallel to(alpha n) and r(K) <= r(K-1) (alpha 1)r(K-2)(alpha 2) ... r(K-n)(alpha n), where parallel to.parallel to and r(.) denote the operator norm and the spectral radius, respectively. In the case of completely atomic measure space we show some additional results. In particular, we prove an infinite-dimensional extension of the known characterization of those functions f : R-+(n) --> R+ satisfying r(f(A(1),..., A(n))) <= f(r(A(1)),..., r(A(n))) for all non-negative matrices A(1),..., A(n) of the same order.
引用
收藏
页码:613 / 626
页数:14
相关论文
共 10 条
[1]  
Aliprantis C. D., 1985, POSITIVE OPERATORS
[2]  
[Anonymous], 1988, LINEAR MULTILINEAR A
[3]   SPECTRAL INEQUALITIES FOR COMPACT INTEGRAL-OPERATORS ON BANACH FUNCTION-SPACES [J].
DRNOVSEK, R .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 112 :589-598
[4]   FUNCTIONAL INEQUALITIES FOR SPECTRAL RADII OF NONNEGATIVE MATRICES [J].
ELSNER, L ;
HERSHKOWITZ, D ;
PINKUS, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 129 :103-130
[5]  
Halmos P. R., 1982, HILBERT SPACE PROBLE
[6]   A CONVEXITY PROPERTY OF POSITIVE MATRICES [J].
KINGMAN, JF .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (48) :283-&
[7]  
Meyer-Nieb erg P, 1991, Banach Lattices
[8]  
MOND B, 1996, LINEAR MULTILINEAR A, V40, P203
[9]   TIGHT BOUNDS ON THE SPECTRAL-RADIUS OF ASYMMETRIC NONNEGATIVE MATRICES [J].
SCHWENK, AJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 75 :257-265
[10]  
Zaanen A. C, 1983, Riesz spaces, VII