The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels

被引:154
作者
Staples, Mark D. [1 ]
Malina, Robert [1 ,2 ]
Barrett, Steven R. H. [1 ]
机构
[1] MIT, Dept Aeronaut & Astronaut, Lab Aviat & Environm, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Hasselt Univ, Ctr Environm Sci, Campus Diepenbeek,Agoralaan Bldg D, B-3590 Diepenbeek, Belgium
基金
加拿大自然科学与工程研究理事会;
关键词
LAND-USE; JET FUEL; BIOMASS ENERGY; CORN STOVER; TRANSPORTATION; POTENTIALS; BIODIESEL; BIOFUEL;
D O I
10.1038/nenergy.2016.202
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The size of the global bioenergy resource has been studied extensively; however, the corresponding life-cycle greenhouse gas benefit of bioenergy remains largely unexplored at the global scale. Here we quantify the optimal use of global bioenergy resources to offset fossil fuels in 2050. We find that bioenergy could reduce life-cycle emissions from fossil fuel-derived electricity and heat, and liquid fuels, by a maximum of 4.9-38.7 Gt CO(2)e, or 9-68%, and that offsetting electricity and heat with bioenergy is on average 1.6-3.9 times more effective for emissions mitigation than offsetting liquid fuels. At the same time, liquid fuels make up 18-49% of the optimal allocation of bioenergy in our results for 2050, indicating that a mix of bioenergy end-uses maximizes life-cycle emissions reductions. Finally, emissions reductions are maximized by limiting deployment of total available primary bioenergy to 29-91% in our analysis, demonstrating that life-cycle emissions are a constraint on the usefulness of bioenergy for mitigating global climate change.
引用
收藏
页数:8
相关论文
共 65 条
[11]  
[Anonymous], EN TECHN PERSP 2014
[12]  
Argonne National Laboratory, 2015, GREENH GAS REG EM EN
[13]   Meeting global temperature targets-the role of bioenergy with carbon capture and storage [J].
Azar, Christian ;
Johansson, Daniel J. A. ;
Mattsson, Niclas .
ENVIRONMENTAL RESEARCH LETTERS, 2013, 8 (03)
[14]   Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass [J].
Bond, Jesse Q. ;
Upadhye, Aniruddha A. ;
Olcay, Hakan ;
Tompsett, Geoffrey A. ;
Jae, Jungho ;
Xing, Rong ;
Alonso, David Martin ;
Wang, Dong ;
Zhang, Taiying ;
Kumar, Rajeev ;
Foster, Andrew ;
Sen, S. Murat ;
Maravelias, Christos T. ;
Malina, Robert ;
Barrett, Steven R. H. ;
Lobo, Raul ;
Wyman, Charles E. ;
Dumesic, James A. ;
Huber, George W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1500-1523
[15]   Life-Cycle Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal, and Petroleum [J].
Burnham, Andrew ;
Han, Jeongwoo ;
Clark, Corrie E. ;
Wang, Michael ;
Dunn, Jennifer B. ;
Palou-Rivera, Ignasi .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (02) :619-627
[16]   Greater Transportation Energy and GHG Offsets from Bioelectricity Than Ethanol [J].
Campbell, J. E. ;
Lobell, D. B. ;
Field, C. B. .
SCIENCE, 2009, 324 (5930) :1055-1057
[17]  
Commission E.U, 2014, State of play on the sustainability of solid and gaseous biomass used for electricity heating and cooling in the EU
[18]   Environmental life cycle assessment (LCA) of aviation biofuel from microalgae, Pongamia pinnata, and sugarcane molasses [J].
Cox, Kelly ;
Renouf, Marguerite ;
Dargan, Aidan ;
Turner, Christopher ;
Klein-Marcuschamer, Daniel .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2014, 8 (04) :579-593
[19]   Projections of the availability and cost of residues from agriculture and forestry [J].
Daioglou, Vassilis ;
Stehfest, Elke ;
Wicke, Birka ;
Faaij, Andre ;
van Vuuren, Detlef P. .
GLOBAL CHANGE BIOLOGY BIOENERGY, 2016, 8 (02) :456-470
[20]   Mitigation of Aviation Emissions of Carbon Dioxide Analysis for Europe [J].
Dray, Lynnette ;
Evans, Antony ;
Reynolds, Tom ;
Schaefer, Andreas .
TRANSPORTATION RESEARCH RECORD, 2010, (2177) :17-26