Engel elements in some fractal groups

被引:4
|
作者
Fernandez-Alcober, Gustavo A. [1 ]
Garreta, Albert [1 ]
Noce, Marialaura [1 ,2 ]
机构
[1] Univ Basque Country, Dept Math, Bilbao 48080, Spain
[2] Univ Salerno, Dipartimento Matemat, Via Giovanni Paolo II,132, I-84084 Fisciano, SA, Italy
来源
MONATSHEFTE FUR MATHEMATIK | 2019年 / 189卷 / 04期
基金
欧洲研究理事会;
关键词
Fractal group; Engel element; Basilica group; GGS group; Lamplighter group;
D O I
10.1007/s00605-018-1218-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime and let G be a subgroup of a Sylow pro-p subgroup of the group of automorphisms of the p-adic tree. We prove that if G is fractal and vertical bar G':stG(1)'vertical bar=infinity, then the set L(G) of left Engel elements of G is trivial. This result applies to fractal nonabelian groups with torsion-free abelianization, for example the Basilica group, the Brunner-Sidki-Vieira group, and also to the GGS-group with constant defining vector. We further provide two examples showing that neither of the requirements vertical bar G':stG(1)'vertical bar=infinity and being fractal can be dropped.
引用
收藏
页码:651 / 660
页数:10
相关论文
共 50 条