Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China

被引:90
作者
Liao, Hao [1 ]
Zhang, Yuchen [1 ]
Zuo, Qinyan [1 ]
Du, Binbin [1 ]
Chen, Wenli [1 ]
Wei, Dan [3 ]
Huang, Qiaoyun [1 ,2 ]
机构
[1] Huazhong Agr Univ, State Key Lab Agr Microbiol, Wuhan 430070, Hubei, Peoples R China
[2] Huazhong Agr Univ, Coll Resources & Environm, Key Lab Arable Land Conservat Middle & Lower Reac, Minist Agr, Wuhan 430070, Hubei, Peoples R China
[3] Heilongjiang Acad Agr Sci, Inst Soil Fertilizer & Environm Resources, Harbin 150086, Heilongjiang, Peoples R China
关键词
Aggregate-size fractions; Fertilization; Bacterial community; Fungal community; ORGANIC-MATTER; MICROBIAL COMMUNITIES; ENZYME-ACTIVITIES; MICROSCALE DISTRIBUTION; NITROGEN-FERTILIZATION; CARBON; DIVERSITY; BIOMASS; PLANT; RHIZOSPHERE;
D O I
10.1016/j.scitotenv.2018.04.168
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soils, with non-uniform distribution of nutrients across different aggregate-size fractions, provide spatially heterogeneous microhabitats for microorganisms. However, very limited information is available on microbial distributions and their response to fertilizations across aggregate-size fractions in agricultural soils. Here, we examined the structures of bacterial and fungal communities across different aggregate-size fractions (2000-250 mu m, 250-53 mu m and <53 mu m) in response to 35-years organic and/or chemical fertilization regimes in the soil of northeastern China by phospholipid fatty acid (PLFA) and high throughput sequencing (HTS) technology. Our results show that larger fractions (>53 mu m), especially 250-53 mu m aggregates, which contain more soil C and N, are associatedwith greater microbial biomass and higher fungi/bacteria ratio. We firstly reported the fungal community composition in different aggregate-size fractions by HTS technology and found more Ascomycota but less Zygomycota in larger fractions with higher C content across all fertilization regimes. Fertilization and aggregate-size fractions significantly affect the compositions of bacterial and fungal communities although their effects are different. The bacterial community is mainly driven by fertilization, especially chemical fertilizers, and is closely related to the shifts of soil P (phosphorus). The fungal community is preferentially impacted by different aggregate-size fractions and is more associated with the changes of soil C and N. The distinct responses of microbial communities suggest different mechanisms controlling the assembly of soil bacterial and fungal communities at aggregate scale. The investigations of both bacterial and fungal communities could provide a better understanding on nutrient cycling across aggregate-size fractions. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:784 / 792
页数:9
相关论文
共 71 条
[1]   Soil aggregation, and total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia [J].
Ashagrie, Y. ;
Zech, W. ;
Guggenberger, G. ;
Mamo, T. .
SOIL & TILLAGE RESEARCH, 2007, 94 (01) :101-108
[2]   Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration [J].
Bailey, VL ;
Smith, JL ;
Bolton, H .
SOIL BIOLOGY & BIOCHEMISTRY, 2002, 34 (07) :997-1007
[3]   Active and total microbial communities in forest soil are largely different and highly stratified during decomposition [J].
Baldrian, Petr ;
Kolarik, Miroslav ;
Stursova, Martina ;
Kopecky, Jan ;
Valaskova, Vendula ;
Vetrovsky, Tomaas ;
Zifcakova, Lucia ;
Snajdr, Jaroslav ;
Ridl, Jakub ;
Vlcek, Cestmir ;
Voriskova, Jana .
ISME JOURNAL, 2012, 6 (02) :248-258
[4]   Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth [J].
Bell, Colin W. ;
Asao, Shinichi ;
Calderon, Francisco ;
Wolk, Brett ;
Wallenstein, Matthew D. .
SOIL BIOLOGY & BIOCHEMISTRY, 2015, 85 :170-182
[5]   Litter chemistry explains contrasting feeding preferences of bacteria, fungi, and higher plants [J].
Bonanomi, Giuliano ;
Cesarano, Gaspare ;
Lombardi, Nadia ;
Motti, Riccardo ;
Scala, Felice ;
Mazzoleni, Stefano ;
Incerti, Guido .
SCIENTIFIC REPORTS, 2017, 7
[6]   The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems [J].
Briar, Shabeg S. ;
Fonte, Steven J. ;
Park, Inmyoung ;
Six, Johan ;
Scow, Kate ;
Ferris, Howard .
SOIL BIOLOGY & BIOCHEMISTRY, 2011, 43 (05) :905-914
[7]   Soil structure and management: a review [J].
Bronick, CJ ;
Lal, R .
GEODERMA, 2005, 124 (1-2) :3-22
[8]   454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity [J].
Buee, M. ;
Reich, M. ;
Murat, C. ;
Morin, E. ;
Nilsson, R. H. ;
Uroz, S. ;
Martin, F. .
NEW PHYTOLOGIST, 2009, 184 (02) :449-456
[9]   Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms [J].
Caporaso, J. Gregory ;
Lauber, Christian L. ;
Walters, William A. ;
Berg-Lyons, Donna ;
Huntley, James ;
Fierer, Noah ;
Owens, Sarah M. ;
Betley, Jason ;
Fraser, Louise ;
Bauer, Markus ;
Gormley, Niall ;
Gilbert, Jack A. ;
Smith, Geoff ;
Knight, Rob .
ISME JOURNAL, 2012, 6 (08) :1621-1624
[10]   Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample [J].
Caporaso, J. Gregory ;
Lauber, Christian L. ;
Walters, William A. ;
Berg-Lyons, Donna ;
Lozupone, Catherine A. ;
Turnbaugh, Peter J. ;
Fierer, Noah ;
Knight, Rob .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 :4516-4522