Superlattice-based thin-film thermoelectric modules with high cooling fluxes

被引:173
作者
Bulman, Gary [1 ]
Barletta, Phil [1 ]
Lewis, Jay [1 ]
Baldasaro, Nicholas [1 ]
Manno, Michael [2 ]
Bar-Cohen, Avram [2 ]
Yang, Bao [2 ]
机构
[1] RTI Int, Elect & Appl Phys Div, Res Triangle Pk, NC 27709 USA
[2] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
PERFORMANCE; TEMPERATURE; POWER; CHIP; DEVICES; FIGURE;
D O I
10.1038/ncomms10302
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In present-day high-performance electronic components, the generated heat loads result in unacceptably high junction temperatures and reduced component lifetimes. Thermoelectric modules can, in principle, enhance heat removal and reduce the temperatures of such electronic devices. However, state-of-the-art bulk thermoelectric modules have a maximum cooling flux q(max) of only about 10 W cm(-2), while state-of-the art commercial thin-film modules have a qmax <100 W cm(-2). Such flux values are insufficient for thermal management of modern high-power devices. Here we show that cooling fluxes of 258 W cm(-2) can be achieved in thin-film Bi2Te3-based superlattice thermoelectric modules. These devices utilize a p-type Sb2Te3/Bi2Te3 superlattice and n-type delta-doped Bi2Te3-Se-x(x), both of which are grown heteroepitaxially using metalorganic chemical vapour deposition. We anticipate that the demonstration of these high-cooling-flux modules will have far-reaching impacts in diverse applications, such as advanced computer processors, radio-frequency power devices, quantum cascade lasers and DNA micro-arrays.
引用
收藏
页数:7
相关论文
共 35 条
[1]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[2]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[3]   Large external ΔT and cooling power densities in thin-film Bi2Te3-superlattice thermoelectric cooling devices [J].
Bulman, G. E. ;
Siivola, E. ;
Shen, B. ;
Venkatasubramanian, R. .
APPLIED PHYSICS LETTERS, 2006, 89 (12)
[4]   Three-Stage Thin-Film Superlattice Thermoelectric Multistage Microcoolers with a ΔT max of 102 K [J].
Bulman, Gary E. ;
Siivola, Ed ;
Wiitala, Ryan ;
Venkatasubramanian, Rama ;
Acree, Michael ;
Ritz, Nathan .
JOURNAL OF ELECTRONIC MATERIALS, 2009, 38 (07) :1510-1515
[5]   Effects of ball milling on microstructures and thermoelectric properties of higher manganese silicides [J].
Chen, Xi ;
Shi, Li ;
Zhou, Jianshi ;
Goodenough, John B. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 641 :30-36
[6]  
Chowdhury I, 2009, NAT NANOTECHNOL, V4, P235, DOI [10.1038/nnano.2008.417, 10.1038/NNANO.2008.417]
[7]   CsBi4Te6:: A high-performance thermoelectric material for low-temperature applications [J].
Chung, DY ;
Hogan, T ;
Brazis, P ;
Rocci-Lane, M ;
Kannewurf, C ;
Bastea, M ;
Uher, C ;
Kanatzidis, MG .
SCIENCE, 2000, 287 (5455) :1024-1027
[8]  
Goh TJ, 2004, MICROELECTRON INT, V21, P29, DOI [10.1108/13565360410531999, 10.1108/13565360410549701]
[9]  
Habbe B., 2011, ELECT COOLING, V17, P24
[10]   Quantum dot superlattice thermoelectric materials and devices [J].
Harman, TC ;
Taylor, PJ ;
Walsh, MP ;
LaForge, BE .
SCIENCE, 2002, 297 (5590) :2229-2232