Random Bitstream Generation Using Voltage-Controlled Magnetic Anisotropy and Spin Orbit Torque Magnetic Tunnel Junctions

被引:8
作者
Liu, Samuel [1 ]
Kwon, Jaesuk [1 ]
Bessler, Paul W. W. [1 ]
Cardwell, Suma G. G. [2 ]
Schuman, Catherine [3 ]
Smith, J. Darby [2 ]
Aimone, James B. B. [2 ]
Misra, Shashank [2 ]
Incorvia, Jean Anne C. [1 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[2] Sandia Natl Labs, Albuquerque, NM 87123 USA
[3] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA
来源
IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS | 2022年 / 8卷 / 02期
关键词
Magnetic tunneling; Switches; Stochastic processes; Magnetization; Probabilistic logic; Damping; Anisotropic magnetoresistance; Bitstream; magnetic tunnel junction (MTJ); probablistic-bit; spin orbit torque (SOT); voltage-controlled magnetic anisotropy (VCMA); MGO;
D O I
10.1109/JXCDC.2022.3231550
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Probabilistic computing using random number generators (RNGs) can leverage the inherent stochasticity of nanodevices for system-level benefits. Device candidates for this application need to produce highly random "coinflips " while also having tunable biasing of the coin. The magnetic tunnel junction (MTJ) has been studied as an RNG due to its thermally-driven magnetization dynamics, often using spin transfer torque (STT) current amplitude to control the random switching of the MTJ free layer (FL) magnetization, here called the stochastic write method. There are additional knobs to control the MTJ-RNG, including voltage-controlled magnetic anisotropy (VCMA) and spin orbit torque (SOT), and there is a need to systematically study and compare these methods. We build an analytical model of the MTJ to characterize using VCMA and SOT to generate random bit streams. The results show that both methods produce high-quality, uniformly distributed bitstreams. Biasing the bitstreams using either STT current or an applied magnetic field shows a sigmoidal distribution versus bias amplitude for both VCMA and SOT, compared to less sigmoidal for stochastic write. The energy consumption per sample is calculated to be 0.1 pJ (SOT), 1 pJ (stochastic write), and 20 pJ (VCMA), revealing the potential energy benefit of using SOT and showing using VCMA may require higher damping materials. The generated bitstreams are then applied to two tasks: generating an arbitrary probability distribution and using the MTJ-RNGs as stochastic neurons to perform simulated annealing, where both VCMA and SOT methods show the ability to effectively minimize the system energy with a small delay and low energy. These results show the flexibility of the MTJ as a true RNG and elucidate design parameters for optimizing the device operation for applications.
引用
收藏
页码:194 / 202
页数:9
相关论文
共 42 条
[1]  
Bojnordi MN, 2016, INT S HIGH PERF COMP, P1, DOI 10.1109/HPCA.2016.7446049
[2]   Integer factorization using stochastic magnetic tunnel junctions [J].
Borders, William A. ;
Pervaiz, Ahmed Z. ;
Fukami, Shunsuke ;
Camsari, Kerem Y. ;
Ohno, Hideo ;
Datta, Supriyo .
NATURE, 2019, 573 (7774) :390-+
[3]   Voltage-Controlled Spintronic Stochastic Neuron Based on a Magnetic Tunnel Junction [J].
Cai, Jialin ;
Fang, Bin ;
Zhang, Like ;
Lv, Wenxing ;
Zhang, Baoshun ;
Zhou, Tiejun ;
Finocchio, Giovanni ;
Zeng, Zhongming .
PHYSICAL REVIEW APPLIED, 2019, 11 (03)
[4]   p-bits for probabilistic spin logic [J].
Camsari, Kerem Y. ;
Sutton, Brian M. ;
Datta, Supriyo .
APPLIED PHYSICS REVIEWS, 2019, 6 (01)
[5]   Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls [J].
Currivan-Incorvia, J. A. ;
Siddiqui, S. ;
Dutta, S. ;
Evarts, E. R. ;
Zhang, J. ;
Bono, D. ;
Ross, C. A. ;
Baldo, M. A. .
NATURE COMMUNICATIONS, 2016, 7
[6]   Scaling Projections on Spin-Transfer Torque Magnetic Tunnel Junctions [J].
Das, Debasis ;
Tulapurkar, Ashwin ;
Muralidharan, Bhaskaran .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (02) :724-732
[7]   A 14 nm Embedded STT-MRAM CMOS Technology [J].
Edelstein, D. ;
Rizzolo, M. ;
Sil, D. ;
Dutta, A. ;
DeBrosse, J. ;
Wordeman, M. ;
Arceo, A. ;
Chu, I. C. ;
Demarest, J. ;
Edwards, E. R. J. ;
Evarts, E. R. ;
Fullam, J. ;
Gasasira, A. ;
Hu, G. ;
Iwatake, M. ;
Johnson, R. ;
Katragadda, V ;
Levin, T. ;
Li, J. ;
Liu, Y. ;
Long, C. ;
Maffitt, T. ;
McDermott, S. ;
Mehta, S. ;
Mehta, V ;
Metzler, D. ;
Morillo, J. ;
Nakamura, Y. ;
Nguyen, S. ;
Nieves, P. ;
Pai, V ;
Patlolla, R. ;
Pujari, R. ;
Southwick, R. ;
Standaert, T. ;
van der Straten, O. ;
Wu, H. ;
Yang, C-C ;
Houssameddine, D. ;
Slaughter, J. M. ;
Worledge, D. C. .
2020 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2020,
[8]  
Fukami S, 2016, NAT NANOTECHNOL, V11, P621, DOI [10.1038/NNANO.2016.29, 10.1038/nnano.2016.29]
[9]   Single-shot dynamics of spin-orbit torque and spin transfer torque switching in three-terminal magnetic tunnel junctions [J].
Grimaldi, Eva ;
Krizakova, Viola ;
Sala, Giacomo ;
Yasin, Farrukh ;
Couet, Sebastien ;
Kar, Gouri Sankar ;
Garello, Kevin ;
Gambardella, Pietro .
NATURE NANOTECHNOLOGY, 2020, 15 (02) :111-+
[10]   Neuromorphic spintronics [J].
Grollier, J. ;
Querlioz, D. ;
Camsari, K. Y. ;
Everschor-Sitte, K. ;
Fukami, S. ;
Stiles, M. D. .
NATURE ELECTRONICS, 2020, 3 (07) :360-370