Spatiotemporal light control with frequency-gradient metasurfaces

被引:146
作者
Shaltout, Amr M. [1 ]
Lagoudakis, Konstantinos G. [2 ,3 ]
van de Groep, Jorik [1 ]
Kim, Soo Jin [1 ,4 ]
Vuckovic, Jelena [2 ]
Shalaev, Vladimir M. [5 ,6 ]
Brongersma, Mark L. [1 ]
机构
[1] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA
[2] Stanford Univ, Ginzton Lab, Stanford, CA 94305 USA
[3] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[4] Korea Univ, Sch Elect Engn, Seoul 02841, South Korea
[5] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[6] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
关键词
PANCHARATNAM-BERRY PHASE; BROAD-BAND; META-ATOMS; REFLECTION;
D O I
10.1126/science.aax2357
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The capability of on-chip wavefront modulation has the potential to revolutionize many optical device technologies. However, the realization of power-efficient phase-gradient metasurfaces that offer full-phase modulation (0 to 2 pi) and high operation speeds remains elusive. We present an approach to continuously steer light that is based on creating a virtual frequency-gradient metasurface by combining a passive metasurface with an advanced frequency-comb source. Spatiotemporal redirection of light naturally occurs as optical phase-fronts reorient at a speed controlled by the frequency gradient across the virtual metasurface. An experimental realization of laser beam steering with a continuously changing steering angle is demonstrated with a single metasurface over an angle of 25 degrees in just 8 picoseconds. This work can support integrated-on-chip solutions for spatiotemporal optical control, directly affecting emerging applications such as solid-state light detection and ranging (LIDAR), three-dimensional imaging, and augmented or virtual systems.
引用
收藏
页码:374 / +
页数:17
相关论文
共 33 条
[21]   Dynamic Reflection Phase and Polarization Control in Metasurfaces [J].
Park, Junghyun ;
Kang, Ju-Hyung ;
Kim, Soo Jin ;
Liu, Xiaoge ;
Brongersma, Mark L. .
NANO LETTERS, 2017, 17 (01) :407-413
[22]   Metamaterials: Optical Activity without Chirality [J].
Plum, E. ;
Liu, X. -X. ;
Fedotov, V. A. ;
Chen, Y. ;
Tsai, D. P. ;
Zheludev, N. I. .
PHYSICAL REVIEW LETTERS, 2009, 102 (11)
[23]   Efficient and broadband quarter-wave plates by gap-plasmon resonators [J].
Pors, Anders ;
Bozhevolnyi, Sergey I. .
OPTICS EXPRESS, 2013, 21 (03) :2942-2952
[24]   Photonic spin Hall effect in gap-plasmon metasurfaces for on-chip chiroptical spectroscopy [J].
Shaltout, Amr ;
Liu, Jingjing ;
Kildishev, Alexander ;
Shalaev, Vladimir .
OPTICA, 2015, 2 (10) :860-863
[25]   Time-varying metasurfaces and Lorentz non-reciprocity [J].
Shaltout, Amr ;
Kildishev, Alexander ;
Shalaev, Vladimir .
OPTICAL MATERIALS EXPRESS, 2015, 5 (11) :2459-2467
[26]   Experimental Demonstration of >230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces [J].
Sherrott, Michelle C. ;
Hon, Philip W. C. ;
Fountaine, Katherine T. ;
Garcia, Juan C. ;
Ponti, Samuel M. ;
Brar, Victor W. ;
Sweatlock, Luke A. ;
Atwater, Harry A. .
NANO LETTERS, 2017, 17 (05) :3027-3034
[27]  
Weiner A., 2011, ULTRAFAST OPTICS
[28]   Femtosecond pulse shaping using spatial light modulators [J].
Weiner, AM .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (05) :1929-1960
[29]   Ultrafast optical pulse shaping: A tutorial review [J].
Weiner, Andrew M. .
OPTICS COMMUNICATIONS, 2011, 284 (15) :3669-3692
[30]   A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces [J].
Yu, Nanfang ;
Aieta, Francesco ;
Genevet, Patrice ;
Kats, Mikhail A. ;
Gaburro, Zeno ;
Capasso, Federico .
NANO LETTERS, 2012, 12 (12) :6328-6333