Optimizing Ontology Learning Systems that Use Heterogeneous Sources of Evidence

被引:1
作者
Wohlgenannt, Gerhard [1 ]
Belk, Stefan [1 ]
Rohrer, Katharina [1 ]
机构
[1] Vienna Univ Econ & Business, A-1200 Vienna, Austria
来源
MULTI-DISCIPLINARY TRENDS IN ARTIFICIAL INTELLIGENCE, MIWAI 2015 | 2015年 / 9426卷
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
Heterogeneous evidence sources; Ontology learning; Optimization; Spreading activation;
D O I
10.1007/978-3-319-26181-2_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As the manual construction of ontologies is expensive, many systems to (semi-) automatically generate ontologies from data have been built. More recently, such systems typically integrate multiple and heterogeneous evidence sources. In this paper, we propose a method to optimize ontology learning frameworks by finding near-optimal input weights for the individual evidence sources. The optimization process applies a so-called source impact vector and the Tabu-search heuristic to improve system accuracy. An evaluation in two domains shows that optimization provides gains in accuracy of around 10 %.
引用
收藏
页码:137 / 148
页数:12
相关论文
共 14 条
  • [1] Abeyruwan Saminda, 2013, LNCS, P217
  • [2] [Anonymous], 1992, COLING 1992, DOI DOI 10.3115/992133.992154
  • [3] [Anonymous], 1997, Tabu Search
  • [4] Cimiano P, 2005, LECT NOTES COMPUT SC, V3513, P227
  • [5] Cimiano P., 2005, LEARNING TAXONOMIC R, P59
  • [6] Application of spreading activation techniques in information retrieval
    Crestani, F
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 1997, 11 (06) : 453 - 482
  • [7] Drymonas E, 2010, LECT NOTES COMPUT SC, V6177, P277, DOI 10.1007/978-3-642-13881-2_29
  • [8] Liu Wei., 2005, Journal of Universal Knowledge Management, Journal of Universal Knowledge Management, P50
  • [9] Manzano-Macho D., 2008, LREC 2008
  • [10] Refining non-taxonomic relation labels with external structured data to support ontology learning
    Weichselbraun, Albert
    Wohlgenannt, Gerhard
    Scharl, Arno
    [J]. DATA & KNOWLEDGE ENGINEERING, 2010, 69 (08) : 763 - 778