Atomic Scale Plasmonic Switch

被引:130
作者
Emboras, Alexandros [1 ]
Niegemann, Jens [1 ]
Ma, Ping [1 ]
Haffner, Christian [1 ]
Pedersen, Andreas [2 ]
Luisier, Mathieu [2 ]
Hafner, Christian [1 ]
Schimmel, Thomas [3 ,4 ]
Leuthold, Juerg [1 ]
机构
[1] ETH, Inst Electromagnet Fields, CH-8092 Zurich, Switzerland
[2] ETH, Computat Nanoelect Grp, CH-8092 Zurich, Switzerland
[3] Karlsruhe Inst Technol, Inst Appl Phys, D-76128 Karlsruhe, Germany
[4] Karlsruhe Inst Technol, Inst Nanotechnol INT, D-76128 Karlsruhe, Germany
关键词
Atomic contacts; quantum plasmonics; memristor; surface plasmons; local oxidation; silicon photonics; ab initio calculation; MEMRISTOR; CONDUCTANCE;
D O I
10.1021/acs.nanolett.5b04537
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level.
引用
收藏
页码:709 / 714
页数:6
相关论文
共 43 条
[1]   Quantum properties of atomic-sized conductors [J].
Agraït, N ;
Yeyati, AL ;
van Ruitenbeek, JM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 377 (2-3) :81-279
[2]   Ultra-high-Q toroid microcavity on a chip [J].
Armani, DK ;
Kippenberg, TJ ;
Spillane, SM ;
Vahala, KJ .
NATURE, 2003, 421 (6926) :925-928
[3]   The promise of plasmonics [J].
Atwater, Harry A. .
SCIENTIFIC AMERICAN, 2007, 296 (04) :56-63
[4]   Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics [J].
Barbry, M. ;
Koval, P. ;
Marchesin, F. ;
Esteban, R. ;
Borisov, A. G. ;
Aizpurua, J. ;
Sanchez-Portal, D. .
NANO LETTERS, 2015, 15 (05) :3410-3419
[5]   Nanooptics of Molecular-Shunted Plasmonic Nanojunctions [J].
Benz, Felix ;
Tserkezis, Christos ;
Herrmann, Lars O. ;
de Nijs, Bart ;
Sanders, Alan ;
Sigle, Daniel O. ;
Pukenas, Laurynas ;
Evans, Stephen D. ;
Aizpurua, Javier ;
Baumberg, Jeremy J. .
NANO LETTERS, 2015, 15 (01) :669-674
[6]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[7]  
Dennis BS, 2015, NAT PHOTONICS, V9, P267, DOI [10.1038/nphoton.2015.40, 10.1038/NPHOTON.2015.40]
[8]   POSITIONING SINGLE ATOMS WITH A SCANNING TUNNELING MICROSCOPE [J].
EIGLER, DM ;
SCHWEIZER, EK .
NATURE, 1990, 344 (6266) :524-526
[9]  
Emboras A., 2015, ARXIV150807748
[10]   Nanoscale Plasmonic Memristor with Optical Readout Functionality [J].
Emboras, Alexandros ;
Goykhman, Ilya ;
Desiatov, Boris ;
Mazurski, Noa ;
Stern, Liron ;
Shappir, Joseph ;
Levy, Uriel .
NANO LETTERS, 2013, 13 (12) :6151-6155