The importance of risk models for management of pulmonary nodules

被引:0
作者
Prosch, H. [1 ]
Baltzer, P. [1 ]
机构
[1] Med Univ Wien, Allgemeines Krankenhaus, Univ Radiol & Nukl Med, A-1090 Vienna, Austria
来源
RADIOLOGE | 2014年 / 54卷 / 05期
关键词
Malignancy; Computed tomography; X rays; Pre-test probability; Post-test probability; CLINICAL-PREDICTION MODEL; LUNG-CANCER; BAYESIAN-ANALYSIS; MALIGNANCY; VALIDATION; PROBABILITY; LIKELIHOOD;
D O I
10.1007/s00117-013-2600-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Pulmonary nodules are a frequent finding in computed tomography (CT) investigations. Further diagnostic work-up of detected nodules mainly depends on the so-called pre-test probability, i.e. the probability that the nodule is malignant or benign. The pre-test probability can be calculated by combining all relevant information, such as the age and the sex of the patient, the smoking history, and history of previous malignancies, as well as the size and CT morphology of the nodule. If additional investigations are performed to further investigate the nodules, all results must be interpreted taking into account the pre-test probability and the test performance of the investigation in order to estimate the post-test probability. In cases with a low pre-test probability, a negative result from an exact test can exclude malignancies but a positive test cannot prove malignancy in such a setting. In cases with a high pre-test probability, a positive test result can be considered as proof of malignancy but a negative test result does not exclude malignancy.
引用
收藏
页码:449 / +
页数:5
相关论文
共 50 条
[21]   Risk of malignancy in pulmonary nodules: A validation study of four prediction models [J].
Al-Ameri, Ali ;
Malhotra, Puneet ;
Thygesen, Helene ;
Plant, Paul K. ;
Vaidyanathan, Sri ;
Karthik, Shishir ;
Scarsbrook, Andrew ;
Callister, Matthew E. J. .
LUNG CANCER, 2015, 89 (01) :27-30
[22]   Establishment and validation of multiclassification prediction models for pulmonary nodules based on machine learning [J].
Liu, Qiao ;
Lv, Xue ;
Zhou, Daiquan ;
Yu, Na ;
Hong, Yuqin ;
Zeng, Yan .
CLINICAL RESPIRATORY JOURNAL, 2024, 18 (05)
[23]   Management of solid pulmonary nodules [J].
Poschenrieder, F. ;
Beyer, L. ;
Rehbock, B. ;
Diederich, S. ;
Wormanns, D. ;
Stroszczynski, C. ;
Hamer, O. W. .
RADIOLOGE, 2014, 54 (05) :436-+
[24]   Diagnosis and management of pulmonary nodules [J].
Krochmal, Rebecca ;
Arias, Sixto ;
Yarmus, Lonny ;
Feller-Kopman, David ;
Lee, Hans .
EXPERT REVIEW OF RESPIRATORY MEDICINE, 2014, 8 (06) :677-691
[25]   The Value of a Seven-Autoantibody Panel Combined with the Mayo Model in the Differential Diagnosis of Pulmonary Nodules [J].
Ling, Zhougui ;
Chen, Jifei ;
Wen, Zhongwei ;
Wei, Xiaomou ;
Su, Rui ;
Tang, Zhenming ;
Hu, Zhuojun .
DISEASE MARKERS, 2021, 2021
[26]   Comparison of prediction models with radiological semantic features and radiomics in lung cancer diagnosis of the pulmonary nodules: a case-control study [J].
Wu, Wei ;
Pierce, Larry A. ;
Zhang, Yuzheng ;
Pipavath, Sudhakar N. J. ;
Randolph, Timothy W. ;
Lastwika, Kristin J. ;
Lampe, Paul D. ;
Houghton, A. McGarry ;
Liu, Haining ;
Xia, Liming ;
Kinahan, Paul E. .
EUROPEAN RADIOLOGY, 2019, 29 (11) :6100-6108
[27]   Evaluation and Management of Indeterminate Pulmonary Nodules [J].
Hodnett, Philip A. ;
Ko, Jane P. .
RADIOLOGIC CLINICS OF NORTH AMERICA, 2012, 50 (05) :895-+
[28]   Management strategy of solitary pulmonary nodules [J].
Zhan, Ping ;
Xie, Haiyan ;
Xu, Chunhua ;
Hao, Keke ;
Hou, Zhibo ;
Song, Yong .
JOURNAL OF THORACIC DISEASE, 2013, 5 (06) :824-829
[29]   Comprehensive Analysis of Clinical Logistic and Machine Learning-Based Models for the Evaluation of Pulmonary Nodules [J].
Zhang, Kai ;
Wei, Zihan ;
Nie, Yuntao ;
Shen, Haifeng ;
Wang, Xin ;
Wang, Jun ;
Yang, Fan ;
Chen, Kezhong .
JTO CLINICAL AND RESEARCH REPORTS, 2022, 3 (04)
[30]   Incidental pulmonary nodules: characterization and management [J].
Trinidad Lopez, C. ;
Delgado Sanchez-Gracian, C. ;
Utrera Perez, E. ;
Jurado Basildo, C. ;
Sepulveda Villegas, C. A. .
RADIOLOGIA, 2019, 61 (05) :357-369