Primal-dual distance bounds of linear codes with application to cryptography

被引:7
作者
Matsumoto, Ryutaroh [1 ]
Kurosawa, Kaoru
Konno, Toshimitsu
Uyematsu, Tomohiko
机构
[1] Tokyo Inst Technol, Dept Commun & Integrated Syst, Tokyo 1528552, Japan
[2] Ibaraki Univ, Dept Comp & Informat Sci, Ibaraki 3168511, Japan
[3] Tokyo Inst Technol, GSIC Ctr, Tokyo 1528552, Japan
[4] Tokyo Inst Technol, Dept Comp Sci, Tokyo 1528552, Japan
关键词
Boolean function; dual distance; linear code; minimum distance;
D O I
10.1109/TIT.2006.880050
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let N(d, d(perpendicular to)) denote the minimum length a. of a linear code C with d and d(perpendicular to), where d is the minimum Hamming distance of C and d(perpendicular to) is the minimum Hamming distance of C-perpendicular to. In this correspondence, we show lower bounds and an upper bound on N(d, d(perpendicular to)). Further, for small values of d and d(perpendicular to), we determine N(d, d(perpendicular to)) and give a generator matrix of the optimum linear code. This problem is directly related to the design method of cryptographic Boolean functions suggested by Kurosawa et al.
引用
收藏
页码:4251 / 4256
页数:6
相关论文
共 14 条
[1]   A FAST AND SIMPLE RANDOMIZED PARALLEL ALGORITHM FOR THE MAXIMAL INDEPENDENT SET PROBLEM [J].
ALON, N ;
BABAI, L ;
ITAI, A .
JOURNAL OF ALGORITHMS, 1986, 7 (04) :567-583
[2]  
[Anonymous], LECT NOTES COMPUTER
[3]  
BERTSIMAS D, 1997, INTRO LINEAR OPTIMIZ, P22317
[4]  
BIHAM E, 1991, LECT NOTES COMPUT SC, V537, P2
[5]   THE LINEAR-PROGRAMMING BOUND FOR BINARY LINEAR CODES [J].
BROUWER, AE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (02) :677-680
[6]   On cryptographic propagation criteria for Boolean functions [J].
Carlet, C .
INFORMATION AND COMPUTATION, 1999, 151 (1-2) :32-56
[7]  
DELSARTE P, 1972, PHILIPS RES REP, V27, P272
[8]  
DILLON JF, 1974, THESIS U MARYLAND CO, P22317
[9]  
KUROSAWA K, 1997, LECT NOTES COMPUTER, V1233, P434
[10]  
MACWILLIAMS FJ, 1977, THEORY ERROR CORRECT, P22317