Low cycle fatigue and creep fatigue interaction behavior of 9Cr-0.5Mo-1.8W-V-Nb heat-resistant steel at high temperature

被引:54
作者
Wang, Xiaowei [1 ,2 ,3 ]
Zhang, Wei [1 ,2 ]
Gong, Jianming [1 ,2 ]
Wahab, Magd Abdel [4 ,5 ]
机构
[1] Nanjing Tech Univ, Sch Mech & Power Engn, Nanjing 210000, Jiangsu, Peoples R China
[2] Jiangsu Key Lab Design & Manufacture Extreme Pres, Nanjing 210000, Jiangsu, Peoples R China
[3] Univ Ghent, Fac Engn & Architecture, B-9052 Zwijnaarde, Belgium
[4] Duy Tan Univ, Inst Res & Dev, 03 Quang Trung, Da Nang, Vietnam
[5] Univ Ghent, Soete Lab, B-9000 Ghent, Belgium
基金
中国博士后科学基金;
关键词
Low cycle fatigue; Creep fatigue interaction; Microstructure; Fracture; Heat resistant steel; 9CR-1MO MARTENSITIC STEEL; HOLD-TIME; ELEVATED-TEMPERATURE; POWER-PLANT; FERRITIC/MARTENSITIC STEELS; MICROSTRUCTURAL STABILITY; OXIDATION INTERACTIONS; LIFE PREDICTION; FERRITIC STEEL; MO STEEL;
D O I
10.1016/j.jnucmat.2018.03.055
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, Low Cycle Fatigue (LCF) and Creep-Fatigue Interaction (CFI) behavior of 9Cr-0.5Mo-1.8W-V-Nb heat-resistant steel (ASME Grade P92 steel) at elevated temperature of 600 degrees C are investigated. Strain controlled LCF tests are conducted in fully reversed triangular waveform at different strain amplitudes ranging from 0.2% to 0.8%. CFI tests are conducted at 0.4% strain amplitude in trapezoid waveform with tensile hold time varying from 1min to 60 min and compressive hold time varying from 1min to 10 min. During LCF and CFI loadings, the evolution of cyclic stress, mean stress and stress relaxation behavior are investigated. It turns out that the softening behavior and lifetime degradation are dependent on strain amplitude, hold time and hold direction. In addition, the microstructure evolution and fracture behavior are characterized by optical, scanning and transmission electron microscope. The initial rapid softening behavior is attributed to the quick elimination of low angle boundaries, whereas no obvious microstructure alteration appears in the stable stage. Fracture behavior analysis reveals creep voids in longterm CFI tests facilitates the initiation and propagation of secondary cracks. The different responses of outer surface oxidation layer during cycling provides an explanation for severer damage of compressive hold and also accounts for the observed various fracture behavior of failed samples. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 84
页数:12
相关论文
共 45 条
  • [1] CREEP-FATIGUE EVALUATION OF NORMALIZED AND TEMPERED MODIFIED 9CR-1MO
    AOTO, K
    KOMINE, R
    UENO, F
    KAWASAKI, H
    WADA, Y
    [J]. NUCLEAR ENGINEERING AND DESIGN, 1994, 153 (01) : 97 - 110
  • [2] High temperature creep-fatigue-oxidation interactions in 9-12%Cr martensitic steels
    Benjamin, Fournier
    Maxime, Sauzay
    Christel, Caes
    Michel, Noblecourt
    Veronique, Rabeau
    Annick, Bougault
    Andre, Pineau
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2009, 386-88 : 418 - 421
  • [3] High-temperature low-cycle fatigue behavior of a 9Cr-ODS steel: Part 1-lpure fatigue, microstructure evolution and damage characteristics
    Chauhan, Ankur
    Hoffmann, Jan
    Litvinov, Dimitri
    Aktaa, Jarir
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 707 : 207 - 220
  • [4] Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650°C
    Chen, G.
    Zhang, Y.
    Xu, D. K.
    Lin, Y. C.
    Chen, X.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 655 : 175 - 182
  • [5] EFFECT OF PROCESSING ON THE HIGH-TEMPERATURE LOW-CYCLE FATIGUE PROPERTIES OF MODIFIED 9CR-1MO FERRITIC STEEL
    EBI, G
    MCEVILY, AJ
    [J]. FATIGUE OF ENGINEERING MATERIALS AND STRUCTURES, 1984, 7 (04): : 299 - 314
  • [6] Ellyin F., 1996, Fatigue Damage, Crack Growth and Life Prediction, DOI DOI 10.1007/978-94-009-1509-1
  • [7] Implications of steam oxidation for the service life of high-strength martensitic steel components in high-temperature plant
    Ennis, P. J.
    Quadakkers, W. J.
    [J]. INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2007, 84 (1-2) : 82 - 87
  • [8] Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant
    Ennis, PJ
    Zielinska-Lipiec, A
    Wachter, O
    CzyrskaFilemonowicz, A
    [J]. ACTA MATERIALIA, 1997, 45 (12) : 4901 - 4907
  • [9] Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel.: Part 1:: Effect of tensile holding period on fatigue lifetime
    Fournier, B.
    Sauzay, M.
    Caes, C.
    Noblecourt, M.
    Mottot, M.
    Bougault, A.
    Rabeau, V.
    Pineau, A.
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2008, 30 (04) : 649 - 662
  • [10] Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel.: Part II:: Effect of compressive holding period on fatigue lifetime
    Fournier, B.
    Sauzay, M.
    Caes, C.
    Noblecourt, M.
    Mottot, M.
    Bougault, A.
    Rabeau, V.
    Pineau, A.
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2008, 30 (04) : 663 - 676