Fuzzy languages with infinite range accepted by fuzzy automata: Pumping Lemma and determinization procedure

被引:17
作者
Gonzalez de Mendivil, Jose R. [1 ]
Garitagoitia, Jose R. [1 ]
机构
[1] Univ Publ Navarra, Dept Ingn Matemat & Informat, Pamplona 31006, Spain
关键词
Fuzzy automata; Finite automata; Fuzzy languages; Pumping Lemma; Determinization; Triangular norms; LATTICE-VALUED LOGIC; MEMBERSHIP VALUES; FINITE AUTOMATA; MODEL;
D O I
10.1016/j.fss.2014.02.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The formulation of fuzzy automata allows us to select a great variety of triangular norms. Depending on the selected triangular norm, a fuzzy automaton can accept a fuzzy language (FA-language) with infinite range. These fuzzy automata are not equivalent to the so-called deterministic fuzzy automata (deterministic automata with a fuzzy subset of final states) which only accept fuzzy languages with finite range. In this paper, we study FA-languages with infinite range and a determinization procedure in order to obtain an equivalent fuzzy deterministic automaton for a given fuzzy automaton. A fuzzy deterministic automaton is a fuzzy automaton which satisfies the deterministic condition in its state transition function. The main contributions of our paper are: (1) a Pumping Lemma of FA-languages with infinite range; (2) the formulation of fuzzy deterministic automata and a Pumping Lemma of FDA-languages; (3) the necessary conditions for the determinization of fuzzy automata under continuous triangular norms which accept fuzzy languages of infinite range; and (4) a determinization algorithm for fuzzy automata, its correctness proof and performance. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 38 条
[21]  
Mateescu A., 1995, Journal of Universal Computer Science, V1, P292
[22]   Fuzzy and non-deterministic automata [J].
J. Močkoř .
Soft Computing, 1999, 3 (4) :221-226
[23]  
Mohri M, 1997, COMPUT LINGUIST, V23, P269
[24]  
Mordeson JN, 2002, COMP MATH SERIES, pIX
[25]  
Pedrycz W., 2001, International Journal of Computational Intelligence and Applications, V1, P19, DOI 10.1142/S1469026801000068
[26]  
Qiu D., 2001, SCI CHINA SER F, V44, P419, DOI DOI 10.1007/BF02879817
[27]   Pumping lemma in automata theory based on complete residuated lattice-valued logic: A note [J].
Qiu, Daowen .
FUZZY SETS AND SYSTEMS, 2006, 157 (15) :2128-2138
[28]   Supervisory control of fuzzy discrete event systems: A formal approach [J].
Qiu, DW .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2005, 35 (01) :72-88
[29]  
Qiu DW, 2002, SCI CHINA SER F, V45, P442
[30]  
Rahonis G, 2009, MONOGR THEOR COMPUT, P481, DOI 10.1007/978-3-642-01492-5_12