Fuzzy languages with infinite range accepted by fuzzy automata: Pumping Lemma and determinization procedure

被引:17
作者
Gonzalez de Mendivil, Jose R. [1 ]
Garitagoitia, Jose R. [1 ]
机构
[1] Univ Publ Navarra, Dept Ingn Matemat & Informat, Pamplona 31006, Spain
关键词
Fuzzy automata; Finite automata; Fuzzy languages; Pumping Lemma; Determinization; Triangular norms; LATTICE-VALUED LOGIC; MEMBERSHIP VALUES; FINITE AUTOMATA; MODEL;
D O I
10.1016/j.fss.2014.02.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The formulation of fuzzy automata allows us to select a great variety of triangular norms. Depending on the selected triangular norm, a fuzzy automaton can accept a fuzzy language (FA-language) with infinite range. These fuzzy automata are not equivalent to the so-called deterministic fuzzy automata (deterministic automata with a fuzzy subset of final states) which only accept fuzzy languages with finite range. In this paper, we study FA-languages with infinite range and a determinization procedure in order to obtain an equivalent fuzzy deterministic automaton for a given fuzzy automaton. A fuzzy deterministic automaton is a fuzzy automaton which satisfies the deterministic condition in its state transition function. The main contributions of our paper are: (1) a Pumping Lemma of FA-languages with infinite range; (2) the formulation of fuzzy deterministic automata and a Pumping Lemma of FDA-languages; (3) the necessary conditions for the determinization of fuzzy automata under continuous triangular norms which accept fuzzy languages of infinite range; and (4) a determinization algorithm for fuzzy automata, its correctness proof and performance. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 38 条
[11]   Deformed fuzzy automata for correcting imperfect strings of fuzzy symbols [J].
Garitagoitia, JR ;
de Mendívil, JRG ;
Echanobe, J ;
Astrain, JJ ;
Fariña, F .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2003, 11 (03) :299-310
[12]  
Gottwald S., 2011, DECISION THEORY QUAL, P62
[13]  
Hopcroft J. E., 2007, Introduction to automata theory, languages, and computation, V3rd
[14]   Determinization of fuzzy automata with membership values in complete residuated lattices [J].
Ignjatovic, Jelena ;
Ciric, Miroslav ;
Bogdanovic, Stojan .
INFORMATION SCIENCES, 2008, 178 (01) :164-180
[15]   Myhill-Nerode type theory for fuzzy languages and automata [J].
Ignjatovic, Jelena ;
Ciric, Miroslav ;
Bogdanovic, Stojan ;
Petkovic, Tatjana .
FUZZY SETS AND SYSTEMS, 2010, 161 (09) :1288-1324
[16]   An improved algorithm for determinization of weighted and fuzzy automata [J].
Jancic, Zorana ;
Ignjatovic, Jelena ;
Ciric, Miroslav .
INFORMATION SCIENCES, 2011, 181 (07) :1358-1368
[17]  
Klement E.P., 2000, Triangular Norms
[18]   NOTE ON FUZZY LANGUAGES [J].
LEE, ET ;
ZADEH, LA .
INFORMATION SCIENCES, 1969, 1 (04) :421-&
[19]   Fuzzy finite automata and fuzzy regular expressions with membership values in lattice-ordered monoids [J].
Li, YM ;
Pedrycz, W .
FUZZY SETS AND SYSTEMS, 2005, 156 (01) :68-92
[20]   On fuzzy regular languages [J].
Malik, DS ;
Mordeson, JN ;
Sen, MK .
INFORMATION SCIENCES, 1996, 88 (1-4) :263-273