FROM RUIN TO BANKRUPTCY FOR COMPOUND POISSON SURPLUS PROCESSES

被引:35
作者
Albrecher, Hansjoerg [1 ,2 ]
Lautscham, Volkmar [1 ]
机构
[1] Univ Lausanne, Fac Business & Econ, Dept Actuarial Sci, UNIL Dorigny, CH-1015 Lausanne, Switzerland
[2] Swiss Finance Inst, Zurich, Switzerland
来源
ASTIN BULLETIN | 2013年 / 43卷 / 02期
基金
瑞士国家科学基金会;
关键词
Classical risk process; Omega model; ruin probability; discounted penalty function; bankruptcy rate function; RISK MODEL;
D O I
10.1017/asb.2013.4
中图分类号
F [经济];
学科分类号
02 ;
摘要
In classical risk theory, the infinite-time ruin probability of a surplus process C-t is calculated as the probability of the process becoming negative at some point in time. In this paper, we consider a relaxation of the ruin concept to the concept of bankruptcy, according to which one has a positive surplus-dependent probability to continue despite temporary negative surplus. We study the resulting bankruptcy probability for the compound Poisson risk model with exponential claim sizes for different bankruptcy rate functions, deriving analytical results, upper and lower bounds as well as an efficient simulation method. Numerical examples are given and the results are compared with the classical ruin probabilities. Finally, it is illustrated how the analysis can be extended to study the discounted penalty function under this relaxed ruin criterion.
引用
收藏
页码:213 / 243
页数:31
相关论文
共 17 条
[1]  
Abramowitz M., 1972, Applied Mathematics Series, V55
[2]   The optimal dividend barrier in the Gamma–Omega model [J].
Albrecher H. ;
Gerber H.U. ;
Shiu E.S.W. .
European Actuarial Journal, 2011, 1 (1) :43-55
[3]   RANDOMIZED OBSERVATION PERIODS FOR THE COMPOUND POISSON RISK MODEL: DIVIDENDS [J].
Albrecher, Hansjoerg ;
Cheung, Eric C. K. ;
Thonhauser, Stefan .
ASTIN BULLETIN, 2011, 41 (02) :645-672
[4]  
Asmussen S., 2010, RUIN PROBABILITIES, V14
[5]  
CHEN N., 2012, 4 OFF FIN RES
[6]  
Dassios A., 1989, STOCH MODELS, V5, P181, DOI DOI 10.1080/15326348908807105
[7]  
Dickson D.C., 2005, Insurance Risk and Ruin, International Series on Actuarial Science
[8]  
DREKIC S., 2004, SCANDINAVIAN ACTUARI, V2, P105
[9]  
Gerber H.U., 1971, Bull. Swiss Asso. Actuar, V71, P63
[10]  
Glasserman P., 2010, Contingent Capital with a Capital-Ratio Trigger