Genomic structure and expression of uncoupling protein 2 genes in rainbow trout (Oncorhynchus mykiss)

被引:31
作者
Coulibaly, Issa
Gahr, Scott A.
Palti, Yniv
Yao, Jianbo
Rexroad, Caird E., III
机构
[1] USDA ARS, Natl Ctr Cool & Cold Water Aquaculture, Kearneysville, WV 25430 USA
[2] W Virginia Univ, Anim & Vet Sci Div, Morgantown, WV 26506 USA
关键词
D O I
10.1186/1471-2164-7-203
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Uncoupling protein 2 (UCP2) belongs to the superfamily of mitochondrial anion carriers that dissociate the respiratory chain from ATP synthesis. It has been determined that UCP2 plays a role in several physiological processes such as energy expenditure, body weight control and fatty acid metabolism in several vertebrate species. We report the first characterization of UCP2s in rainbow trout (Oncorhynchus mykiss). Results: Two UCP2 genes were identified in the rainbow trout genome, UCP2A and UCP2B. These genes are 93% similar in their predicted amino acid sequences and display the same genomic structure as other vertebrates (8 exons and 7 introns) spanning 4.2 kb and 3.2 kb, respectively. UCP2A and UCP2B were widely expressed in all tissues of the study with a predominant level in macrophage-rich tissues and reproductive organs. In fry muscle we observed an increase in UCP2B expression in response to fasting and a decrease after refeeding in agreement with previous studies in human, mouse, rat, and marsupials. The converse expression pattern was observed for UCP2A mRNA which decreased during fasting, suggesting different metabolic roles for UCP2A and UCP2B in rainbow trout muscle. Phylogenetic analysis including other genes from the UCP core family located rainbow trout UCP2A and UCP2B with their orthologs and suggested an early divergence of vertebrate UCPs from a common ancestor gene. Conclusion: We characterized two UCP2 genes in rainbow trout with similar genomic structures, amino acid sequences and distribution profiles. These genes appeared to be differentially regulated in response to fasting and refeeding in fry muscle. The genomic organization and phylogeny analysis support the hypothesis of a common ancestry between the vertebrate UCPs.
引用
收藏
页数:13
相关论文
共 64 条
[1]   Structure and organization of the human uncoupling protein 2 gene and identification of a common biallelic variant in Caucasian and African-American subjects [J].
Argyropoulos, G ;
Brown, AM ;
Peterson, R ;
Likes, CE ;
Watson, DK ;
Garvey, WT .
DIABETES, 1998, 47 (04) :685-687
[2]   Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production [J].
Arsenijevic, D ;
Onuma, H ;
Pecqueur, C ;
Raimbault, S ;
Manning, BS ;
Miroux, B ;
Couplan, E ;
Alves-Guerra, MC ;
Goubern, M ;
Surwit, R ;
Bouillaud, F ;
Richard, D ;
Collins, S ;
Ricquier, D .
NATURE GENETICS, 2000, 26 (04) :435-439
[3]   GENE DUPLICATION IN TETRAPLOID FISH - MODEL FOR GENE SILENCING AT UNLINKED DUPLICATED LOCI [J].
BAILEY, GS ;
POULTER, RTM ;
STOCKWELL, PA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1978, 75 (11) :5575-5579
[4]   Mitochondrial uncoupling proteins in mammals and plants [J].
Borecky, J ;
Maia, IG ;
Arruda, P .
BIOSCIENCE REPORTS, 2001, 21 (02) :201-212
[5]   Tissue-dependent upregulation of rat uncoupling protein-2 expression in response to fasting or cold [J].
Boss, O ;
Samec, S ;
Dulloo, A ;
Seydoux, J ;
Muzzin, P ;
Giacobino, JP .
FEBS LETTERS, 1997, 412 (01) :111-114
[6]   Uncoupling protein-3: A new member of the mitochondrial carrier family with tissue-specific expression [J].
Boss, O ;
Samec, S ;
PaoloniGiacobino, A ;
Rossier, C ;
Dulloo, A ;
Seydoux, J ;
Muzzin, P ;
Giacobino, JP .
FEBS LETTERS, 1997, 408 (01) :39-42
[7]   Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3 [J].
Brand, MD ;
Esteves, TC .
CELL METABOLISM, 2005, 2 (02) :85-93
[8]   UCP2 and UCP3 rise in starved rat skeletal muscle but mitochondrial proton conductance is unchanged [J].
Cadenas, S ;
Buckingham, JA ;
Samec, S ;
Seydoux, J ;
Din, N ;
Dulloo, AG ;
Brand, MD .
FEBS LETTERS, 1999, 462 (03) :257-260
[9]   Increased uncoupling protein-2 levels in β-cells are associated with impaired glucose-stimulated insulin secretion -: Mechanism of action [J].
Chan, CB ;
De Leo, D ;
Joseph, JW ;
McQuaid, TS ;
Ha, XF ;
Xu, F ;
Tsushima, RG ;
Pennefathner, PS ;
Salapatek, AMF ;
Wheeler, MB .
DIABETES, 2001, 50 (06) :1302-1310
[10]   Characterization and comparison of microsatellites derived from repeat-enriched libraries and expressed sequence tags [J].
Coulibaly, I ;
Gharbi, K ;
Danzmann, RG ;
Yao, J ;
Rexroad, CE .
ANIMAL GENETICS, 2005, 36 (04) :309-315