An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex

被引:21
|
作者
Zhang, Ye [1 ]
Chen, Kenian [2 ,3 ]
Sloan, Steven A. [1 ]
Bennett, Mariko L. [1 ]
Scholze, Anja R. [1 ]
O'Keeffe, Sean [4 ]
Phatnani, Hemali P. [4 ]
Guarnieri, Paolo [7 ,9 ]
Caneda, Christine [1 ]
Ruderisch, Nadine [5 ]
Deng, Shuyun [2 ,3 ]
Liddelow, Shane A. [1 ,6 ]
Zhang, Chaolin [4 ,7 ,8 ]
Daneman, Richard [5 ]
Maniatis, Tom [4 ]
Barres, Ben A. [1 ]
Wu, Jia Qian [2 ,3 ]
机构
[1] Stanford Univ, Sch Med, Dept Neurobiol, Stanford, CA 94305 USA
[2] Univ Texas Houston, Med Sch Houston, Vivian L Smith Dept Neurosurg, Houston, TX 77057 USA
[3] Univ Texas, Inst Mol Med Brown, Ctr Stem Cell & Regenerat Med, Houston, TX 77057 USA
[4] Columbia Univ, Med Ctr, Dept Biochem & Mol Biophys, New York, NY 10032 USA
[5] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA
[6] Univ Melbourne, Dept Pharmacol & Therapeut, Parkville, Vic 3010, Australia
[7] Columbia Univ, Dept Syst Biol, New York, NY 10032 USA
[8] Columbia Univ, Ctr Motor Neuron Biol & Dis, New York, NY 10032 USA
[9] Columbia Univ, Herbert Irving Comprehens Canc Ctr, New York, NY 10032 USA
基金
美国国家卫生研究院; 英国医学研究理事会;
关键词
alternative splicing; astrocytes; microglia; oligodendrocytes; transcriptome; vascular cells; BRAIN ENERGY-METABOLISM; GENE-EXPRESSION; ADHESION MOLECULE; GENOMIC ANALYSIS; BINDING PROTEIN; NONCODING RNAS; STEM-CELLS; RAT-BRAIN; IN-VITRO; ASTROCYTES;
D O I
10.1523/JNEUROSCI.1860-14.2014
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The major cell classes of the brain differ in their developmental processes, metabolism, signaling, and function. To better understand the functions and interactions of the cell types that comprise these classes, we acutely purified representative populations of neurons, astrocytes, oligodendrocyte precursor cells, newly formed oligodendrocytes, myelinating oligodendrocytes, microglia, endothelial cells, and pericytes from mouse cerebral cortex. We generated a transcriptome database for these eight cell types by RNA sequencing and used a sensitive algorithm to detect alternative splicing events in each cell type. Bioinformatic analyses identified thousands of new cell type-enriched genes and splicing isoforms that will provide novel markers for cell identification, tools for genetic manipulation, and insights into the biology of the brain. For example, our data provide clues as to how neurons and astrocytes differ in their ability to dynamically regulate glycolytic flux and lactate generation attributable to unique splicing of PKM2, the gene encoding the glycolytic enzyme pyruvate kinase. This dataset will provide a powerful new resource for understanding the development and function of the brain. To ensure the widespread distribution of these datasets, we have created a user-friendly website (http://web.stanford.edu/group/barres_lab/brain_rnaseq.html) that provides a platform for analyzing and comparing transciption and alternative splicing profiles for various cell classes in the brain.
引用
收藏
页码:11929 / 11947
页数:19
相关论文
共 50 条
  • [1] Distinction of Neurons, Glia and Endothelial Cells in the Cerebral Cortex: An Algorithm Based on Cytological Features
    Garcia-Cabezas, Miguel A.
    John, Yohan J.
    Barbas, Helen
    Zikopoulos, Basilis
    FRONTIERS IN NEUROANATOMY, 2016, 10
  • [2] Transcriptome analysis of eutopic endometrial stromal cells in women with adenomyosis by RNA-sequencing
    Gan, Lin
    Li, Yongrong
    Chen, Yan
    Huang, Meihua
    Cao, Jian
    Cao, Meiling
    Wang, Zhihui
    Wan, Guiping
    Gui, Tao
    BIOENGINEERED, 2022, 13 (05) : 12637 - 12649
  • [3] RNA-Sequencing Analysis Revealed a Distinct Motor Cortex Transcriptome in Spontaneously Recovered Mice After Stroke
    Ito, Masaki
    Aswendt, Markus
    Lee, Alex G.
    Ishizaka, Shunsuke
    Cao, Zhijuan
    Wang, Eric H.
    Levy, Sabrina L.
    Smerin, Daniel L.
    McNab, Jennifer A.
    Zeineh, Michael
    Leuze, Christoph
    Goubran, Maged
    Cheng, Michelle Y.
    Steinberg, Gary K.
    STROKE, 2018, 49 (09) : 2191 - 2199
  • [4] RNA-sequencing analysis of Trichophyton rubrum transcriptome in response to sublethal doses of acriflavine
    Persinoti, Gabriela Felix
    de Aguiar Peres, Nalu Teixeira
    Jacob, Tiago Rinaldi
    Rossi, Antonio
    Vencio, Ricardo Zorzetto
    Martinez-Rossi, Nilce Maria
    BMC GENOMICS, 2014, 15 : S1
  • [5] RNA-Sequencing for profiling goat milk transcriptome in colostrum and mature milk
    Crisa, Alessandra
    Ferre, Fabrizio
    Chillemi, Giovanni
    Moioli, Bianca
    BMC VETERINARY RESEARCH, 2016, 12
  • [6] Transcriptome asymmetry in synthetic and natural allotetraploid wheats, revealed by RNA-sequencing
    Wang, Xutong
    Zhang, Huakun
    Li, Yaling
    Zhang, Zhibin
    Li, Linfeng
    Liu, Bao
    NEW PHYTOLOGIST, 2016, 209 (03) : 1264 - 1277
  • [7] QUANTIFYING ALTERNATIVE SPLICING FROM PAIRED-END RNA-SEQUENCING DATA
    Rossell, David
    Attolini, Camille Stephan-Otto
    Kroiss, Manuel
    Stoecker, Almond
    ANNALS OF APPLIED STATISTICS, 2014, 8 (01) : 309 - 330
  • [8] Chemerin effect on transcriptome of the porcine endometrium during implantation determined by RNA-sequencing†
    Orzechowska, Kinga
    Kopij, Grzegorz
    Paukszto, Lukasz
    Dobrzyn, Kamil
    Kiezun, Marta
    Jastrzebski, Jan
    Kaminski, Tadeusz
    Smolinska, Nina
    BIOLOGY OF REPRODUCTION, 2022, 107 (02) : 557 - 573
  • [9] An RNA-sequencing transcriptome of the rodent Schwann cell response to peripheral nerve injury
    Amanda Brosius Lutz
    Tawaun A. Lucas
    Glenn A. Carson
    Christine Caneda
    Lu Zhou
    Ben A. Barres
    Marion S. Buckwalter
    Steven A. Sloan
    Journal of Neuroinflammation, 19
  • [10] Transcriptome analysis of the compatible interaction of tomato with Verticillium dahliae using RNA-sequencing
    Tan, Guangxuan
    Liu, Kun
    Kang, Jingmin
    Xu, Kedong
    Zhang, Yi
    Hu, Lizong
    Zhang, Ju
    Li, Chengwei
    FRONTIERS IN PLANT SCIENCE, 2015, 6