Entanglement-assisted quantum quasicyclic low-density parity-check codes

被引:72
作者
Hsieh, Min-Hsiu [1 ]
Brun, Todd A. [1 ]
Devetak, Igor [1 ]
机构
[1] Univ So Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 03期
基金
美国国家科学基金会;
关键词
cyclic codes; decoding; error correction codes; polynomial matrices; quantum computing; quantum entanglement; ERROR-CORRECTING CODES;
D O I
10.1103/PhysRevA.79.032340
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the construction of quantum low-density parity-check (LDPC) codes from classical quasicyclic (QC) LDPC codes with girth greater than or equal to 6. We have shown that the classical codes in the generalized Calderbank-Skor-Steane construction do not need to satisfy the dual-containing property as long as preshared entanglement is available to both sender and receiver. We can use this to avoid the many four cycles which typically arise in dual-containing LDPC codes. The advantage of such quantum codes comes from the use of efficient decoding algorithms such as sum-product algorithm (SPA). It is well known that in the SPA, cycles of length 4 make successive decoding iterations highly correlated and hence limit the decoding performance. We show the principle of constructing quantum QC-LDPC codes which require only small amounts of initial shared entanglement.
引用
收藏
页数:7
相关论文
共 20 条
[12]   Near Shannon limit performance of low density parity check codes [J].
MacKay, DJC ;
Neal, RM .
ELECTRONICS LETTERS, 1996, 32 (18) :1645-1646
[13]   Good error-correcting codes based on very sparse matrices [J].
MacKay, DJC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) :399-431
[14]   Sparse-graph codes for quantum error correction [J].
MacKay, DJC ;
Mitchison, G ;
McFadden, PL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (10) :2315-2330
[15]  
MACKAY DJC, 1998, P 36 ALL C COMM CONT
[16]  
Poulin D, 2008, QUANTUM INF COMPUT, V8, P987
[17]   SCHEME FOR REDUCING DECOHERENCE IN QUANTUM COMPUTER MEMORY [J].
SHOR, PW .
PHYSICAL REVIEW A, 1995, 52 (04) :R2493-R2496
[18]  
Smarandache R, 2004, 2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, P274
[19]   Error correcting codes in quantum theory [J].
Steane, AM .
PHYSICAL REVIEW LETTERS, 1996, 77 (05) :793-797
[20]   A RECURSIVE APPROACH TO LOW COMPLEXITY CODES [J].
TANNER, RM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1981, 27 (05) :533-547