MNR method with self-determined regularization parameters for solving inverse resistivity problem

被引:0
作者
Li, Ying [1 ]
Xu, Guizhi [1 ]
Rao, Liyun [1 ]
He, Renjie [1 ]
Zhang, Hanjun [1 ]
Yan, Weili [1 ]
机构
[1] Hebei Univ Technol, Key Lab Electromagnet Field & Elect Apparatus Rel, Tianjin 300130, Peoples R China
来源
2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7 | 2005年
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The modified Newton-Raphson (MNR) method is used to solve the inverse resistivity problem in this paper. Using Tikhonov regularization method, comparisons among the L-curve method, the zero-crossing (ZC) method and the generalized cross validation (GCV) method are carried out for determining the regularization parameters of MNR method. By these criterions the appropriate regularization parameters are self-determined and adjusted with the reconstruction iterations. Our simulation experiments on 2D circle model showed that the GCV method can provide the best reconstruction quality with the fastest speed in inverse resistivity problem using MNR method.
引用
收藏
页码:2652 / 2655
页数:4
相关论文
共 7 条
[1]  
GOLUB GH, 1997, SCI COMPUT, P3
[2]   Selecting the corner in the L-curve approach to Tikhonov regularization [J].
Johnston, PR ;
Gulrajani, RM .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2000, 47 (09) :1293-1296
[3]   A new method for regularization parameter determination in the inverse problem of electrocardiography [J].
Johnston, PR ;
Gulrajani, RM .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1997, 44 (01) :19-39
[4]   Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement [J].
Nguyen, N ;
Milanfar, P ;
Golub, G .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (09) :1299-1308
[5]   An efficient improvement of modified Newton-Raphson algorithm for electrical impedance tomography [J].
Rao, LY ;
He, RJ ;
Wang, YH ;
Yan, WL ;
Bai, J ;
Ye, DT .
IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) :1562-1565
[6]   Effects of incompatible boundary information in EIT on the convergence behavior of an iterative algorithm [J].
Tang, MX ;
Wang, W ;
Wheeler, J ;
McCormick, M ;
Dong, XZ .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (06) :620-628
[7]   COMPARING RECONSTRUCTION ALGORITHMS FOR ELECTRICAL-IMPEDANCE TOMOGRAPHY [J].
YORKEY, TJ ;
WEBSTER, JG ;
TOMPKINS, WJ .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1987, 34 (11) :843-852