Multi-objective optimization of lithium-ion battery model using genetic algorithm approach

被引:152
|
作者
Zhang, Liqiang [1 ]
Wang, Lixin [1 ]
Hinds, Gareth [2 ]
Lyu, Chao [1 ]
Zheng, Jun [1 ]
Li, Junfu [1 ]
机构
[1] Harbin Inst Technol, Sch Elect Engn & Automat, Harbin 150001, Peoples R China
[2] Natl Phys Lab, Teddington TW11 0LW, Middx, England
基金
中国国家自然科学基金;
关键词
Parameter identification; Multi-objective genetic algorithm; Multi-physics model; Lithium-ion battery; PARAMETER SENSITIVITY-ANALYSIS; CAPACITY FADE ANALYSIS; CYCLE LIFE; EXTRACTION; DISCHARGE; CHARGE;
D O I
10.1016/j.jpowsour.2014.07.110
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A multi-objective parameter identification method for modeling of Li-ion battery performance is presented. Terminal voltage and surface temperature curves at 15 degrees C and 30 degrees C are used as four identification objectives. The Pareto fronts of two types of Li-ion battery are obtained using the modified multi-objective genetic algorithm NSGA-II and the final identification results are selected using the multiple criteria decision making method TOPSIS. The simulated data using the final identification results are in good agreement with experimental data under a range of operating conditions. The validation results demonstrate that the modified NSGA-II and TOPSIS algorithms can be used as robust and reliable tools for identifying parameters of multi-physics models for many types of Li-ion batteries. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:367 / 378
页数:12
相关论文
共 50 条
  • [1] Optimization charging method of lithium-ion battery based on multi-objective BBO algorithm
    Duan, Shuangming
    Xia, Kuifeng
    Li, Junhui
    Zhao, Zhiqiang
    Liu, Haojun
    JOURNAL OF ENERGY STORAGE, 2024, 91
  • [2] Multi-objective optimization of demand response in a datacenter with lithium-ion battery storage
    Mamun, A.
    Narayanan, I.
    Wang, D.
    Sivasubramaniam, A.
    Fathy, H. K.
    JOURNAL OF ENERGY STORAGE, 2016, 7 : 258 - 269
  • [3] Multi-Objective Optimization Discharge Method for Heating Lithium-Ion Battery at Low Temperatures
    Du, Jiuyu
    Chen, Zhe
    Li, Feiqiang
    IEEE ACCESS, 2018, 6 : 44036 - 44049
  • [4] Multi-Objective Optimization of Activation Time and Discharge Time of Thermal Battery Using a Genetic Algorithm Approach
    Li, Qing
    Shao, Yu-Qiang
    Liu, Huan-Ling
    Shao, Xiao-Dong
    ENERGIES, 2020, 13 (24)
  • [5] Kalman Filter Tuning Using Multi-Objective Genetic Algorithm for State and Parameter Estimation of Lithium-Ion Cells
    Theiler, Michael
    Schneider, Dominik
    Endisch, Christian
    BATTERIES-BASEL, 2022, 8 (09):
  • [6] In situ monitoring of lithium-ion battery degradation using an electrochemical model
    Lyu, Chao
    Song, Yankong
    Zheng, Jun
    Luo, Weilin
    Hinds, Gareth
    Li, Junfu
    Wang, Lixin
    APPLIED ENERGY, 2019, 250 : 685 - 696
  • [7] Multi-objective Genetic Algorithm Approach to Feature Subset Optimization
    Saroj, Jyoti
    SOUVENIR OF THE 2014 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2014, : 544 - 548
  • [8] Credit portfolio optimization: A multi-objective genetic algorithm approach
    Wang, Zhi
    Zhang, Xuan
    Zhang, ZheKai
    Sheng, Dachen
    BORSA ISTANBUL REVIEW, 2022, 22 (01) : 69 - 76
  • [9] Extraction of battery parameters of the equivalent circuit model using a multi-objective genetic algorithm
    Brand, Jonathan
    Zhang, Zheming
    Agarwal, Ramesh K.
    JOURNAL OF POWER SOURCES, 2014, 247 : 729 - 737
  • [10] Novel decomposed genetic algorithm for equivalent circuit model parameter optimization of lithium-ion battery
    An, Qing
    Zhang, Xia
    Rao, Lang
    Zhang, Mengyan
    JOURNAL OF ENERGY STORAGE, 2025, 108