Automatic glottal inverse filtering with the Markov chain Monte Carlo method

被引:8
作者
Auvinen, Harri [1 ]
Raitio, Tuomo [2 ]
Airaksinen, Manu [2 ]
Siltanen, Samuli [1 ]
Story, Brad H. [3 ]
Alku, Paavo [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[2] Aalto Univ, Dept Signal Proc & Acoust, Espoo, Finland
[3] Univ Arizona, Dept Speech & Hearing Sci, Tucson, AZ 85721 USA
基金
芬兰科学院;
关键词
Glottal inverse filtering; Markov chain Monte Carlo; JOINT ESTIMATION; GIBBS SAMPLER; VOICE SOURCE; VOCAL-TRACT; SPEECH; QUALITY; SYSTEM; MODEL; FLOW;
D O I
10.1016/j.csl.2013.09.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new glottal inverse filtering (GIF) method that utilizes a Markov chain Monte Carlo (MCMC) algorithm. First, initial estimates of the vocal tract and glottal flow are evaluated by an existing GIF method, iterative adaptive inverse filtering (IAIF). Simultaneously, the initially estimated glottal flow is synthesized using the Rosenberg-Klatt (RK) model and filtered with the estimated vocal tract filter to create a synthetic speech frame. In the MCMC estimation process, the first few poles of the initial vocal tract model and the RK excitation parameter are refined in order to minimize the error between the synthetic and original speech signals in the time and frequency domain. MCMC approximates the posterior distribution of the parameters, and the final estimate of the vocal tract is found by averaging the parameter values of the Markov chain. Experiments with synthetic vowels produced by a physical modeling approach show that the MCMC-based GIF method gives more accurate results compared to two known reference methods. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1139 / 1155
页数:17
相关论文
共 50 条
  • [21] Analysis of glottal inverse filtering in the presence of source-filter interaction
    Palaparthi, Anil
    Titze, Ingo R.
    [J]. SPEECH COMMUNICATION, 2020, 123 : 98 - 108
  • [22] MARKOV CHAIN MONTE CARLO AND IRREVERSIBILITY
    Ottobre, Michela
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2016, 77 (03) : 267 - 292
  • [23] Quasi closed phase analysis for glottal inverse filtering
    Airaksinen, Manu
    Story, Brad
    Alku, Paavo
    [J]. 14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 143 - 147
  • [24] Markov chain Monte Carlo1. Examples
    Arnab Chakraborty
    [J]. Resonance, 2002, 7 (3) : 25 - 34
  • [25] Bayesian Computation Via Markov Chain Monte Carlo
    Craiu, Radu V.
    Rosenthal, Jeffrey S.
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 1, 2014, 1 : 179 - 201
  • [26] A Markov Chain Monte Carlo Algorithm for Spatial Segmentation
    Raveendran, Nishanthi
    Sofronov, Georgy
    [J]. INFORMATION, 2021, 12 (02) : 1 - 14
  • [27] Statistical Robustness of Markov Chain Monte Carlo Accelerators
    Zhang, Xiangyu
    Bashizade, Ramin
    Wang, Yicheng
    Mukherjee, Sayan
    Lebeck, Alvin R.
    [J]. ASPLOS XXVI: TWENTY-SIXTH INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, 2021, : 959 - 974
  • [28] Unbiased Markov chain Monte Carlo methods with couplings
    Jacob, Pierre E.
    O'Leary, John
    Atchade, Yves F.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2020, 82 (03) : 543 - 600
  • [29] Markov Chain Monte Carlo (MCMC)A Short Overview
    Vivek S. Borkar
    [J]. Resonance, 2022, 27 : 1107 - 1115
  • [30] Uncovering mental representations with Markov chain Monte Carlo
    Sanborn, Adam N.
    Griffiths, Thomas L.
    Shiffrin, Richard M.
    [J]. COGNITIVE PSYCHOLOGY, 2010, 60 (02) : 63 - 106