Solution Existence for the Complex One-Dimensional Ginzburg-Landau Equations of Superconductivity

被引:0
作者
Fatima, El Azzouzi [1 ]
Mohammed, El Khomssi [1 ]
机构
[1] Univ Sidi Mohamed Ben Abdellah, Coll Sci & Technol, Lab Modeling & Sci Calculat, Fes, Morocco
来源
2019 INTERNATIONAL CONFERENCE ON WIRELESS TECHNOLOGIES, EMBEDDED AND INTELLIGENT SYSTEMS (WITS) | 2019年
关键词
Ginzburg-Landau equations; Chebyshev Polinomials; Rigorous Computation Method; Superconductor; RIGOROUS NUMERICS;
D O I
10.1109/wits.2019.8723708
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we are interested in the computation of the complex solution of a superconductor which characterised by the Psi order parameter (wave function of Cooper pairs) and the vector potential A. In [1] the solution is real, that is to say the authors assumed that the imaginary part is null. We give the complex solution for the problem of Ginzburg-Landau equations using the Chebyshev series and Banach fixed point theorem.
引用
收藏
页数:6
相关论文
共 50 条
[41]   DYNAMICS FOR VORTICES OF AN EVOLUTIONARY GINZBURG-LANDAU EQUATIONS IN 3 DIMENSIONS [J].
LIU ZUHAN Department of Mathematics Normal College Yangzhou University Yangzhou China Email zuhanlyahoocom .
Chinese Annals of Mathematics, 2002, (01) :95-108
[42]   TWO-BAND GINZBURG-LANDAU EQUATIONS: NUMERICAL SIMULATIONS [J].
Askerzade, I. N. ;
Askerbeyli, R. T. .
PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL I, 2018, :98-100
[43]   Dynamics for vortices of an evolutionary Ginzburg-Landau equations in 3 dimensions [J].
Liu, ZH .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2002, 23 (01) :95-108
[44]   Numerics Computation of Solutions for the Two-Dimensional Ginzburg-Landau System using the Chebyshev Method [J].
El Azzouzi, Fatima ;
El Khomssi, Mohammed .
ICEMIS'18: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON ENGINEERING AND MIS, 2018,
[45]   SMALL GLOBAL SOLUTIONS FOR NONLINEAR COMPLEX GINZBURG-LANDAU EQUATIONS AND NONLINEAR DISSIPATIVE WAVE EQUATIONS IN SOBOLEV SPACES [J].
Nakamura, Makoto .
REVIEWS IN MATHEMATICAL PHYSICS, 2011, 23 (08) :903-931
[46]   Global solution for a stochastic Ginzburg-Landau equation with multiplicative noise [J].
Barton-Smith, M .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2004, 22 (01) :1-18
[47]   Uniqueness of weak solutions in critical space of the 3-D time-dependent Ginzburg-Landau equations for superconductivity [J].
Fan, Jishan ;
Gao, Hongjun .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (08) :1134-1143
[48]   An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity [J].
Gao, Huadong ;
Sun, Weiwei .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 294 :329-345
[49]   Stability of periodic solutions of the time-dependent Ginzburg-Landau equations [J].
Zaouch, Fouzi .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2006, 86 (07) :521-538
[50]   Gevrey class regularity for the time-dependent Ginzburg-Landau equations [J].
Chae, DH ;
Han, JM .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (02) :244-257