Solution Existence for the Complex One-Dimensional Ginzburg-Landau Equations of Superconductivity

被引:0
作者
Fatima, El Azzouzi [1 ]
Mohammed, El Khomssi [1 ]
机构
[1] Univ Sidi Mohamed Ben Abdellah, Coll Sci & Technol, Lab Modeling & Sci Calculat, Fes, Morocco
来源
2019 INTERNATIONAL CONFERENCE ON WIRELESS TECHNOLOGIES, EMBEDDED AND INTELLIGENT SYSTEMS (WITS) | 2019年
关键词
Ginzburg-Landau equations; Chebyshev Polinomials; Rigorous Computation Method; Superconductor; RIGOROUS NUMERICS;
D O I
10.1109/wits.2019.8723708
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we are interested in the computation of the complex solution of a superconductor which characterised by the Psi order parameter (wave function of Cooper pairs) and the vector potential A. In [1] the solution is real, that is to say the authors assumed that the imaginary part is null. We give the complex solution for the problem of Ginzburg-Landau equations using the Chebyshev series and Banach fixed point theorem.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Ginzburg-Landau equations on Riemann surfaces of higher genus [J].
Chouchkov, D. ;
Ercolani, N. M. ;
Rayan, S. ;
Sigal, I. M. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (01) :79-103
[32]   Exact solutions in nonlinearly coupled cubic-quintic complex Ginzburg-Landau equations [J].
Yomba, Emmanuel ;
Zakeri, Gholam-Ali .
PHYSICS LETTERS A, 2013, 377 (3-4) :148-157
[33]   Numerical solution of the three-dimensional Ginzburg-Landau models using artificial boundary [J].
Du, Q ;
Wu, XN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (05) :1482-1506
[34]   Critical state simulation of the superconducting layered structures based on numerical solution of the Ginzburg-Landau equations [J].
Lykov, A. N. ;
Tsvetkov, A. Yu. .
LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 :817-+
[35]   Time-dependent Ginzburg-Landau equations for rotating superconductors with paramagnetic impurities [J].
K. M. Shahabasyan ;
M. K. Shahabasyan .
Journal of Contemporary Physics (Armenian Academy of Sciences), 2012, 47 :257-259
[36]   Ginzburg-Landau equations on non-compact Riemann surfaces [J].
Ercolani, Nicholas M. ;
Sigal, Israel Michael ;
Zhang, Jingxuan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (08)
[37]   Numerical mountain pass solutions of Ginzburg-Landau type equations [J].
Glotov, Dmitry ;
McKenna, P. J. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (06) :1345-1359
[38]   Adiabatic Limit in Ginzburg-Landau and Seiberg-Witten Equations [J].
Sergeev, Armen .
GEOMETRIC METHODS IN PHYSICS, 2016, :321-330
[39]   Time-dependent Ginzburg-Landau equations for rotating superconductors with paramagnetic impurities [J].
Shahabasyan, K. M. ;
Shahabasyan, M. K. .
JOURNAL OF CONTEMPORARY PHYSICS-ARMENIAN ACADEMY OF SCIENCES, 2012, 47 (06) :257-259
[40]   A NEW MIXED FORMULATION AND EFFICIENT NUMERICAL SOLUTION OF GINZBURG-LANDAU EQUATIONS UNDER THE TEMPORAL GAUGE [J].
Gao, Huadong ;
Sun, Weiwei .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (03) :A1339-A1357