Solution Existence for the Complex One-Dimensional Ginzburg-Landau Equations of Superconductivity

被引:0
作者
Fatima, El Azzouzi [1 ]
Mohammed, El Khomssi [1 ]
机构
[1] Univ Sidi Mohamed Ben Abdellah, Coll Sci & Technol, Lab Modeling & Sci Calculat, Fes, Morocco
来源
2019 INTERNATIONAL CONFERENCE ON WIRELESS TECHNOLOGIES, EMBEDDED AND INTELLIGENT SYSTEMS (WITS) | 2019年
关键词
Ginzburg-Landau equations; Chebyshev Polinomials; Rigorous Computation Method; Superconductor; RIGOROUS NUMERICS;
D O I
10.1109/wits.2019.8723708
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we are interested in the computation of the complex solution of a superconductor which characterised by the Psi order parameter (wave function of Cooper pairs) and the vector potential A. In [1] the solution is real, that is to say the authors assumed that the imaginary part is null. We give the complex solution for the problem of Ginzburg-Landau equations using the Chebyshev series and Banach fixed point theorem.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Bifurcations and vortex formation in the Ginzburg-Landau equations [J].
Takác, P .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 (08) :523-539
[22]   On Abrikosov Lattice Solutions of the Ginzburg-Landau Equations [J].
Ilias Chenn ;
Panayotis Smyrnelis ;
Israel Michael Sigal .
Mathematical Physics, Analysis and Geometry, 2018, 21
[23]   On Abrikosov Lattice Solutions of the Ginzburg-Landau Equations [J].
Chenn, Ilias ;
Smyrnelis, Panayotis ;
Sigal, Israel Michael .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2018, 21 (01)
[24]   Abrikosov lattice solutions of the Ginzburg-Landau equations [J].
Tzaneteas, T. ;
Sigal, I. M. .
SPECTRAL THEORY AND GEOMETRIC ANALYSIS, 2011, 535 :195-213
[25]   Vortices in the three-dimensional thin-film Ginzburg-Landau model of superconductivity [J].
Glotov, Dmitry .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (05) :891-907
[26]   Efficient Numerical Solution of Dynamical Ginzburg-Landau Equations under the Lorentz Gauge [J].
Gao, Huadong .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 22 (01) :182-201
[27]   On the relationship of periodic wavetrains and solitary waves of complex Ginzburg-Landau type equations [J].
Cruz-Pacheco, G ;
Luce, BP .
PHYSICS LETTERS A, 1997, 236 (5-6) :391-402
[28]   Microscopic Derivation of the Ginzburg-Landau Equations for the Periodic Anderson Model in the Coexistence Phase of Superconductivity and Antiferromagnetism [J].
Val'kov, V. V. ;
Zlotnikov, A. O. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 185 (5-6) :439-445
[29]   The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model [J].
Giorgi, T ;
Phillips, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (02) :341-359
[30]   Solving the Ginzburg-Landau equations with magnetic translation group [J].
Kita, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (06) :2067-2074