Solution Existence for the Complex One-Dimensional Ginzburg-Landau Equations of Superconductivity

被引:0
|
作者
Fatima, El Azzouzi [1 ]
Mohammed, El Khomssi [1 ]
机构
[1] Univ Sidi Mohamed Ben Abdellah, Coll Sci & Technol, Lab Modeling & Sci Calculat, Fes, Morocco
来源
2019 INTERNATIONAL CONFERENCE ON WIRELESS TECHNOLOGIES, EMBEDDED AND INTELLIGENT SYSTEMS (WITS) | 2019年
关键词
Ginzburg-Landau equations; Chebyshev Polinomials; Rigorous Computation Method; Superconductor; RIGOROUS NUMERICS;
D O I
10.1109/wits.2019.8723708
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we are interested in the computation of the complex solution of a superconductor which characterised by the Psi order parameter (wave function of Cooper pairs) and the vector potential A. In [1] the solution is real, that is to say the authors assumed that the imaginary part is null. We give the complex solution for the problem of Ginzburg-Landau equations using the Chebyshev series and Banach fixed point theorem.
引用
收藏
页数:6
相关论文
共 50 条