Finite time blow-up and global solutions for fourth order damped wave equations

被引:38
作者
Wang, Yongda [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
Fourth order wave equation; Initial-boundary value problem; Damping term; Strong source term; NONTRIVIAL SOLUTIONS; EXISTENCE; OSCILLATIONS;
D O I
10.1016/j.jmaa.2014.04.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to a class of fourth order wave equations with linear damping term and superlinear source term. After showing the uniqueness and existence of local solutions to the equations, we give necessary and sufficient conditions for global existence and finite time blow-up of these solutions. Moreover, the potential well depth is estimated. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:713 / 733
页数:21
相关论文
共 34 条
  • [1] Ammann O.H., 1941, The failure of the Tacoma Narrows Bridge
  • [2] [Anonymous], 2013, ELECT J DIFFERENTIAL
  • [3] [Anonymous], FREIMANS CONJECTURE
  • [4] [Anonymous], COMM APPL NONLINEAR
  • [5] [Anonymous], 1992, Differ Integral Equ
  • [6] OBSERVATIONS ON NONLINEAR DYNAMIC CHARACTERISTICS OF SUSPENSION BRIDGES
    BROWNJOHN, JMW
    [J]. EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 1994, 23 (12) : 1351 - 1367
  • [7] EXISTENCE OF GLOBAL CLASSICAL SOLUTION OF INITIAL-BOUNDARY VALUE-PROBLEM FOR CLASSU-U3=F
    EBIHARA, Y
    NAKAO, M
    NANBU, T
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1975, 60 (02) : 63 - 70
  • [8] The dynamics of a nonlinear wave equation
    Esquivel-Avila, JA
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (01) : 135 - 150
  • [9] Phase-field-crystal and Swift-Hohenberg equations with fast dynamics
    Galenko, Peter
    Danilov, Denis
    Lebedev, Vladimir
    [J]. PHYSICAL REVIEW E, 2009, 79 (05):
  • [10] Global solutions and finite time blow up for damped semilinear wave equations
    Gazzola, F
    Squassina, M
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (02): : 185 - 207