NORMAL FAMILY OF MEROMORPHIC FUNCTIONS

被引:0
作者
Wang, Jian-Ping [1 ]
机构
[1] Shaoxing Coll Arts & Sci, Dept Math, Shaoxing 312000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
meromorphic function; normal family; differential polynomial;
D O I
10.4134/BKMS.2014.51.3.691
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study normality for families of meromorphic functions which is related to an extended version of a Hayman's conjecture on value distribution, and prove several normality criteria for meromorphic functions and certain non-homogeneous differential polynomials.
引用
收藏
页码:691 / 700
页数:10
相关论文
共 18 条
[1]  
Alotaibi A., 2004, Comput. Methods Funct. Theory, V4, P227, DOI [10.1007/BF03321066, DOI 10.1007/BF03321066]
[2]  
Bergweiler W, 1995, REV MAT IBEROAM, V11, P355
[3]   A Theorem on Homogeneous Differential Polynomials [J].
Buck, Matthew .
RESULTS IN MATHEMATICS, 2013, 63 (3-4) :805-815
[4]  
CHEN HH, 1995, SCI CHINA SER A, V38, P789
[5]  
CLUNIE J, 1967, J LONDON MATH SOC, V42, P389
[6]   EXCEPTIONAL VALUES OF DIFFERENTIAL POLYNOMIALS [J].
DOERINGER, W .
PACIFIC JOURNAL OF MATHEMATICS, 1982, 98 (01) :55-62
[7]  
Hayman W. K., 1967, Research Problems in Function Theory
[8]   On the value distribution of f2 f(k) [J].
Huang, XJ ;
Gu, YX .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 78 :17-26
[9]  
Langley J. K., 2003, RESULTS MATH, V44, P130, DOI DOI 10.1007/BF03322919
[10]   HAYMAN PROBLEM [J].
MUES, E .
MATHEMATISCHE ZEITSCHRIFT, 1979, 164 (03) :239-259