Recognising tensor products of matrix groups

被引:22
作者
LeedhamGreen, CR [1 ]
OBrien, EA [1 ]
机构
[1] UNIV AUCKLAND,DEPT MATH,AUCKLAND,NEW ZEALAND
关键词
D O I
10.1142/S0218196797000241
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As a contribution to the project for recognising matrix groups defined over finite fields, we describe an algorithm for deciding whether or not the natural module for such a matrix group can be decomposed into a non-trivial tensor product. in the affirmative case, a tensor decomposition is returned. As one component, we develop algorithms to compute p-local subgroups of a matrix group.
引用
收藏
页码:541 / 559
页数:19
相关论文
共 20 条
[1]  
Adams W.W., 1994, GRADUATE STUDIES MAT, V3
[2]   ON THE MAXIMAL-SUBGROUPS OF THE FINITE CLASSICAL-GROUPS [J].
ASCHBACHER, M .
INVENTIONES MATHEMATICAE, 1984, 76 (03) :469-514
[3]  
Bosma W., 1994, Handbook of Magma functions
[4]   IRREDUCIBLES AND THE COMPOSED PRODUCT FOR POLYNOMIALS OVER A FINITE-FIELD [J].
BRAWLEY, JV ;
CARLITZ, L .
DISCRETE MATHEMATICS, 1987, 65 (02) :115-139
[5]   GENERATING RANDOM ELEMENTS OF A FINITE-GROUP [J].
CELLER, F ;
LEEDHAMGREEN, CR ;
MURRAY, SH ;
NIEMEYER, AC ;
OBRIEN, EA .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (13) :4931-4948
[6]  
CELLER F, 1997, AM MATH SOC DIMACS S, V28
[7]  
Conway J., 1985, ATLAS FINITE GROUPS
[8]   Walks on generating sets of Abelian groups [J].
Diaconis, P ;
SaloffCoste, L .
PROBABILITY THEORY AND RELATED FIELDS, 1996, 105 (03) :393-421
[9]  
GLASBY SP, 1995, 954 U SYDN SCH MATH
[10]   TESTING MODULES FOR IRREDUCIBILITY [J].
HOLT, DF ;
REES, S .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1994, 57 :1-16