Analysis of blood flow in deformable vessels via a lattice Boltzmann approach

被引:6
作者
De Rosis, Alessandro [1 ]
机构
[1] Univ Bologna, DICAM, I-40136 Bologna, Italy
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2014年 / 25卷 / 04期
关键词
Lattice Boltzmann method; deformable vessel; pulsatile flow; fluid-structure interaction; FLUID-STRUCTURE INTERACTION; NAVIER-STOKES EQUATIONS; FINITE-ELEMENT; NUMERICAL-ANALYSIS; SIMULATION; RHEOLOGY; MODELS; TRANSPIRATION;
D O I
10.1142/S0129183113501076
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, the lattice Boltzmann (LB) method is used in order to simulate non-Newtonian blood flows in deformable vessels. Casson's rheological model is adopted and a local correction to the relaxation time is implemented in order to modify the viscosity. The hyperelastic, hardening and anisotropic behavior of a flexible arterial wall is discussed and a closed-form solution is used to predict the deformed configuration of the vessel. A partitioned staggered-explicit strategy to couple the LB method and such analytical prediction is proposed.
引用
收藏
页数:18
相关论文
共 51 条
[41]   Force evaluation in the lattice Boltzmann method involving curved geometry [J].
Mei, RW ;
Yu, DZ ;
Shyy, W ;
Luo, LS .
PHYSICAL REVIEW E, 2002, 65 (04) :14
[42]   Lattice Boltzmann simulations of blood flow: Non-Newtonian rheology and clotting processes [J].
Ouared, R ;
Chopard, B .
JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (1-2) :209-221
[43]   NUMERICAL-ANALYSIS OF BLOOD-FLOW IN HEART [J].
PESKIN, CS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 25 (03) :220-252
[44]   Lattice Boltzmann models for non-Newtonian flows [J].
Phillips, T. N. ;
Roberts, G. W. .
IMA JOURNAL OF APPLIED MATHEMATICS, 2011, 76 (05) :790-816
[45]   The unstructured lattice Boltzmann method for non-Newtonian flows [J].
Pontrelli, G. ;
Ubertini, S. ;
Succi, S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
[46]   LATTICE BGK MODELS FOR NAVIER-STOKES EQUATION [J].
QIAN, YH ;
DHUMIERES, D ;
LALLEMAND, P .
EUROPHYSICS LETTERS, 1992, 17 (6BIS) :479-484
[47]  
Succi S., 2001, The lattice Boltzmann equation: For fluid dynamics and beyond
[48]   Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation [J].
Torii, R ;
Oshima, M ;
Kobayashi, T ;
Takagi, K ;
Tezduyar, TE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (13-16) :1885-1895
[49]   Finite-element-based computational methods for cardiovascular fluid-structure interaction [J].
van de Vosse, FN ;
de Hart, J ;
van Oijen, CHGA ;
Bessems, D ;
Gunther, TWM ;
Segal, A ;
Wolters, BJBM ;
Stijnen, JMA ;
Baaijens, FPT .
JOURNAL OF ENGINEERING MATHEMATICS, 2003, 47 (3-4) :335-368
[50]   Simulation of blood flow in deformable vessels using subject-specific geometry and spatially varying wall properties [J].
Xiong, Guanglei ;
Figueroa, C. Alberto ;
Xiao, Nan ;
Taylor, Charles A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2011, 27 (07) :1000-1016