Effects of over-expression of glycerol dehydrogenase and 1,3-propanediol oxidoreductase on bioconversion of glycerol into 1,3-propandediol by Klebsiella pneumoniae under micro-aerobic conditions

被引:41
作者
Zhao, Li [1 ]
Zheng, Yu [1 ]
Ma, Xingyuan [1 ]
Wei, Dongzhi [1 ]
机构
[1] E China Univ Sci & Technol, State Key Lab Bioreactor Engn, New World Inst Biotechnol, Shanghai 200237, Peoples R China
关键词
1,3-Propanediol; 1,3-Propanediol oxidoreductase; Glycerol dehydrogenase; Klebsiella pneumoniae; Micro-aerobic conditions; FERMENTATION; 3-HYDROXYPROPIONALDEHYDE; DISSIMILATION; OVEREXPRESSION; ACCUMULATION; PURIFICATION; METABOLISM; GENES;
D O I
10.1007/s00449-008-0250-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Glycerol dehydrogenase (GDH) and 1,3-propanediol (1,3-PD) oxidoreductase had been proved two key enzymes for 1,3-PD production by Klebsiella pneumoniae. Fed-batch fermentations of the recombinant K. pneumoniae strains, over-expressing the two enzymes individually, were carried out under micro-aerobic conditions, and the behaviors of the recombinants were investigated. Results showed that over-expression of 1,3-PD oxidoreductase did not affect the concentration of 1,3-PD. However, it enhanced the molar yield from 50.6 to 64.0% and reduced the concentration of by-products. Among them, the concentrations of lactic acid, ethanol and succinic acid were decreased by 51.8, 50.6 and 47.4%, respectively. Moreover, in the recombinant the maximal concentration of 3-hydroxypropionaldehyde decreased by 73.6%. Over-expression of GDH decreased the yield of ethanol and 2,3-butanediol, meanwhile it increased the concentration of acetic acid. No significant changes were observed both in 1,3-PD yield and glycerol flux distributed to oxidative branch.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 29 条
[1]  
Ahrens K, 1998, BIOTECHNOL BIOENG, V59, P544, DOI 10.1002/(SICI)1097-0290(19980905)59:5<544::AID-BIT3>3.0.CO
[2]  
2-A
[3]   Physiologic mechanisms involved in accumulation of 3-hydroxypropionaldehyde during fermentation of glycerol by Enterobacter agglomerans [J].
Barbirato, F ;
Soucaille, P ;
Bories, A .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (12) :4405-4409
[4]   3-hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species [J].
Barbirato, F ;
Grivet, JP ;
Soucaille, P ;
Bories, A .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (04) :1448-1451
[5]   PLASMID-ENCODED PROTEIN - THE PRINCIPAL FACTOR IN THE METABOLIC BURDEN ASSOCIATED WITH RECOMBINANT BACTERIA [J].
BENTLEY, WE ;
MIRJALILI, N ;
ANDERSEN, DC ;
DAVIS, RH ;
KOMPALA, DS .
BIOTECHNOLOGY AND BIOENGINEERING, 1990, 35 (07) :668-681
[6]   Microbial production of 1,3-propanediol [J].
Biebl, H ;
Menzel, K ;
Zeng, AP ;
Deckwer, WD .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1999, 52 (03) :289-297
[7]   Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions [J].
Chen, X ;
Zhang, DJ ;
Qi, WT ;
Gao, SJ ;
Xiu, ZL ;
Xu, P .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2003, 63 (02) :143-146
[8]   1,3-propanediol production by Klebsiella pneumoniae under different aeration strategies [J].
Cheng, KK ;
Liu, DH ;
Sun, Y ;
Liu, WB .
BIOTECHNOLOGY LETTERS, 2004, 26 (11) :911-915
[9]  
CIRDE SJ, 1945, IND ENG CHEM ANAL ED, V17, P259, DOI DOI 10.1021/I560140A021
[10]   BIOCHEMICAL AND MOLECULAR CHARACTERIZATION OF THE OXIDATIVE BRANCH OF GLYCEROL UTILIZATION BY CITROBACTER-FREUNDII [J].
DANIEL, R ;
STUERTZ, K ;
GOTTSCHALK, G .
JOURNAL OF BACTERIOLOGY, 1995, 177 (15) :4392-4401