Edge magnetization and local density of states in chiral graphene nanoribbons

被引:36
作者
Carvalho, A. R. [1 ]
Warnes, J. H. [1 ]
Lewenkopf, C. H. [1 ]
机构
[1] Univ Fed Fluminense, Inst Fis, BR-24210346 Niteroi, RJ, Brazil
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 24期
关键词
ELECTRONIC-PROPERTIES; RIBBONS;
D O I
10.1103/PhysRevB.89.245444
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the edge magnetization and the local density of states of chiral graphene nanoribbons using a pi-orbital Hubbard model in the mean-field approximation. We show that the inclusion of a realistic next-nearest hopping term in the tight-binding Hamiltonian changes the graphene nanoribbon band structure significantly and affects its magnetic properties. We study the behavior of the edge magnetization upon departing from half-filling as a function of the nanoribbon chirality and width. We find that the edge magnetization depends very weakly on the nanoribbon width, regardless of chirality as long as the ribbon is sufficiently wide. We compare our results to recent scanning tunneling microscopy experiments reporting signatures of magnetic ordering in chiral nanoribbons and provide an interpretation for the observed peaks in the local density of states, that does not depend on the antiferromagnetic interedge interaction.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Investigations of the band structures of edge-defect zigzag graphene nanoribbons using density functional theory [J].
Moon, Hye Sook ;
Yun, Je Moon ;
Kim, Kwang Ho ;
Jang, Seung Soon ;
Lee, Seung Geol .
RSC ADVANCES, 2016, 6 (46) :39587-39594
[22]   Stacking stability, emergence of magnetization and electromechanical nanosensing in bilayer graphene nanoribbons [J].
Paulla, Kirti K. ;
Farajian, Amir A. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (11)
[23]   Edge states in dichalcogenide nanoribbons and triangular quantum dots [J].
Segarra, C. ;
Planelles, J. ;
Ulloa, S. E. .
PHYSICAL REVIEW B, 2016, 93 (08)
[24]   Effects of edge magnetism on the Kohn anomalies of zigzag graphene nanoribbons [J].
Culchac, F. J. ;
Capaz, Rodrigo B. .
NANOTECHNOLOGY, 2016, 27 (06)
[25]   Energy gap of novel edge-defected graphene nanoribbons [J].
Yuan, Weiqing ;
Wen, Zhongquan ;
Li, Min ;
Chen, Li ;
Chen, Gang ;
Ruan, Desheng ;
Gao, Yang .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (08)
[26]   Stabilizing the Zigzag Edge: Graphene Nanoribbons with Sterically Constrained Terminations [J].
Chia, Cheng-Ing ;
Crespi, Vincent H. .
PHYSICAL REVIEW LETTERS, 2012, 109 (07)
[27]   Edge Engineered Graphene Nanoribbons as Nanoscale Interconnect: DFT Analysis [J].
Agrawal, Sonal ;
Srivastava, Anurag ;
Kaushal, Gaurav ;
Srivastava, Ashok .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2022, 21 :43-51
[28]   Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation [J].
Lee, Geunsik ;
Cho, Kyeongjae .
PHYSICAL REVIEW B, 2009, 79 (16)
[29]   Geometric and Electronic Properties of Edge-decorated Graphene Nanoribbons [J].
Chang, Shen-Lin ;
Lin, Shih-Yang ;
Lin, Shih-Kang ;
Lee, Chi-Hsuan ;
Lin, Ming-Fa .
SCIENTIFIC REPORTS, 2014, 4
[30]   On-surface synthesis of graphene nanoribbons with zigzag edge topology [J].
Ruffieux, Pascal ;
Wang, Shiyong ;
Yang, Bo ;
Sanchez-Sanchez, Carlos ;
Liu, Jia ;
Dienel, Thomas ;
Talirz, Leopold ;
Shinde, Prashant ;
Pignedoli, Carlo A. ;
Passerone, Daniele ;
Dumslaff, Tim ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2016, 531 (7595) :489-+