Carbonate Regeneration Using a Membrane Electrochemical Cell for Efficient CO2 Capture

被引:7
作者
Muroyama, Alexander P. [1 ]
Gubler, Lorenz [1 ]
机构
[1] Paul Scherrer Inst, Electrochem Lab, CH-5232 Villigen, Switzerland
基金
瑞士国家科学基金会;
关键词
CO2; capture; direct air capture; anion exchange membrane; alkaline electrochemistry; carbonate; electrochemical regeneration; DIOXIDE; BICARBONATE; METHANOL; CONVERSION; RECOVERY; AIR;
D O I
10.1021/acssuschemeng.2c04175
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The use of atmospheric CO2 as a chemical feedstock is a promising way to decarbonize the chemical and transportation sectors, which currently rely heavily on fossil fuels. This transition demands new technologies to reduce the energy required to capture and separate CO2. Here, we develop and demonstrate an alternative method of carbonate solution regeneration using an anion exchange membrane electrochemical cell. This process simultaneously regenerates the CO2 capture solution on the feed side, while enriching a stream of H2 with CO2 on the permeate side of the cell. Preliminary results show a CO2 transport faradaic efficiency of 50% (100% CO32- transport) when supplying a pure K2CO3 solution at current densities up to 60 mA center dot cm-2. A small cathode gap benefited cell operation by preventing membrane transport of OH-, although with an increased ohmic resistance. This represents a step forward in the application of electrochemistry to drive processes that are critical to CO2 valorization.
引用
收藏
页码:16113 / 16117
页数:5
相关论文
共 34 条
[1]   Towards the electrochemical conversion of carbon dioxide into methanol [J].
Albo, J. ;
Alvarez-Guerra, M. ;
Castano, P. ;
Irabien, A. .
GREEN CHEMISTRY, 2015, 17 (04) :2304-2324
[2]   High efficiency PEM water electrolysis: enabled by advanced catalysts, membranes, and processes [J].
Ayers, Katherine .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2021, 33
[3]   Process design and energy requirements for the capture of carbon dioxide from air [J].
Baciocchi, Renato ;
Storti, Giuseppe ;
Mazzotti, Marco .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2006, 45 (12) :1047-1058
[4]  
Carbon Recycling International, ABOUT US
[5]  
Eisaman MD, 2009, CLEAN TECHNOLOGY 2009: BIOENERGY, RENEWABLES, STORAGE, GRID, WASTE AND SUSTAINABILITY, P175
[6]   CO2 desorption using high-pressure bipolar membrane electrodialysis [J].
Eisaman, Matthew D. ;
Alvarado, Luis ;
Larner, Daniel ;
Wang, Peng ;
Littau, Karl A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :4031-4037
[7]   CO2 separation using bipolar membrane electrodialysis [J].
Eisaman, Matthew D. ;
Alvarado, Luis ;
Larner, Daniel ;
Wang, Peng ;
Garg, Bhaskar ;
Littau, Karl A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (04) :1319-1328
[8]   Voltage losses in zero-gap alkaline water electrolysis [J].
Haverkort, J. W. ;
Rajaei, H. .
JOURNAL OF POWER SOURCES, 2021, 497
[9]   Carbon dioxide recovery from carbonate solutions using bipolar membrane electrodialysis [J].
Iizuka, Atsushi ;
Hashimoto, Kana ;
Nagasawa, Hiroki ;
Kumagai, Kazukiyo ;
Yanagisawa, Yukio ;
Yamasaki, Akihiro .
SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 101 :49-59
[10]   Green methanol from hydrogen and carbon dioxide using geothermal energy and/or hydropower in Iceland or excess renewable electricity in Germany [J].
Kauw, Marco ;
Benders, Rene M. J. ;
Visser, Cindy .
ENERGY, 2015, 90 :208-217