Trainability of Dissipative Perceptron-Based Quantum Neural Networks

被引:93
作者
Sharma, Kunal [1 ,2 ,3 ]
Cerezo, M. [1 ,4 ]
Cincio, Lukasz [1 ]
Coles, Patrick J. [1 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[2] Louisiana State Univ, Hearne Inst Theoret Phys, Baton Rouge, LA 70803 USA
[3] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
关键词
Condition - Cost-function - Large-scales - Network construction - Proposed architectures - Quantitative bounds - Quantum data - Quantum neural networks - Scaling results - Scalings;
D O I
10.1103/PhysRevLett.128.180505
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Several architectures have been proposed for quantum neural networks (QNNs), with the goal of efficiently performing machine learning tasks on quantum data. Rigorous scaling results are urgently needed for specific QNN constructions to understand which, if any, will be trainable at a large scale. Here, we analyze the gradient scaling (and hence the trainability) for a recently proposed architecture that we call dissipative QNNs (DQNNs), where the input qubits of each layer are discarded at the layer???s output. We find that DQNNs can exhibit barren plateaus, i.e., gradients that vanish exponentially in the number of qubits. Moreover, we provide quantitative bounds on the scaling of the gradient for DQNNs under different conditions, such as different cost functions and circuit depths, and show that trainability is not always guaranteed. Our work represents the first rigorous analysis of the scalability of a perceptron-based QNN.
引用
收藏
页数:7
相关论文
共 71 条
[1]   The power of quantum neural networks [J].
Abbas, Amira ;
Sutter, David ;
Zoufal, Christa ;
Lucchi, Aurelien ;
Figalli, Alessio ;
Woerner, Stefan .
NATURE COMPUTATIONAL SCIENCE, 2021, 1 (06) :403-409
[2]  
Aloysius N, 2017, 2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), P588, DOI 10.1109/ICCSP.2017.8286426
[3]  
Altaisky M. V., ARXIVQUANT PH 010701
[4]  
[Anonymous], 1957, The Perceptron, a Perceiving and Recognizing Automaton Project Para
[5]  
Arrasmith A., ARXIV200406252
[6]   Variational consistent histories as a hybrid algorithm for quantum foundations [J].
Arrasmith, Andrew ;
Cincio, Lukasz ;
Sornborger, Andrew T. ;
Zurek, Wojciech H. ;
Coles, Patrick J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   Hybrid Quantum-Classical Approach to Correlated Materials [J].
Bauer, Bela ;
Wecker, Dave ;
Millis, Andrew J. ;
Hastings, Matthew B. ;
Troyer, Matthias .
PHYSICAL REVIEW X, 2016, 6 (03)
[8]   Training deep quantum neural networks [J].
Beer, Kerstin ;
Bondarenko, Dmytro ;
Farrelly, Terry ;
Osborne, Tobias J. ;
Salzmann, Robert ;
Scheiermann, Daniel ;
Wolf, Ramona .
NATURE COMMUNICATIONS, 2020, 11 (01)
[9]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[10]   Reinforcement Learning for Digital Quantum Simulation [J].
Bolens, Adrien ;
Heyl, Markus .
PHYSICAL REVIEW LETTERS, 2021, 127 (11)