Analysis of 3D Prints by X-ray Computed Microtomography and Terahertz Pulsed Imaging

被引:67
作者
Markl, Daniel [1 ]
Zeitler, J. Axel [1 ]
Rasch, Cecilie [2 ]
Michaelsen, Maria Hotoft [2 ]
Mullertz, Anette [2 ]
Rantanen, Jukka [2 ]
Rades, Thomas [2 ]
Botker, Johan [2 ]
机构
[1] Univ Cambridge, Dept Chem Engn & Biotechnol, Philippa Fawcett Dr, Cambridge CB3 0AS, England
[2] Univ Copenhagen, Dept Pharm, Univ Pk 2, DK-2100 Copenhagen, Denmark
基金
英国工程与自然科学研究理事会;
关键词
3D printing; microstructure; polyvinyl alcohol (PVA); terahertz pulsed imaging (TPI); X-ray computed microtomography (X mu CT); ORAL DOSAGE FORMS; DRUG-RELEASE; TOMOGRAPHY; DEPOSITION; CT;
D O I
10.1007/s11095-016-2083-1
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Purpose A 3D printer was used to realise compartmental dosage forms containing multiple active pharmaceutical ingredient (API) formulations. This work demonstrates the microstructural characterisation of 3D printed solid dosage forms using X-ray computed microtomography (X mu CT) and terahertz pulsed imaging (TPI). Methods Printing was performed with either polyvinyl alcohol (PVA) or polylactic acid (PLA). The structures were examined by X mu CT and TPI. Liquid self-nanoemulsifying drug delivery system (SNEDDS) formulations containing saquinavir and halofantrine were incorporated into the 3D printed compartmentalised structures and in vitro drug release determined. Results A clear difference in terms of pore structure between PVA and PLA prints was observed by extracting the porosity (5.5% for PVA and 0.2% for PLA prints), pore length and pore volume from the X mu CT data. The print resolution and accuracy was characterised by X mu CT and TPI on the basis of the computer-aided design (CAD) models of the dosage form (compartmentalised PVA structures were 7.5 +/- 0.75% larger than designed; n = 3). Conclusions The 3D printer can reproduce specific structures very accurately, whereas the 3D prints can deviate from the designed model. The microstructural information extracted by X mu CT and TPI will assist to gain a better understanding about the performance of 3D printed dosage forms.
引用
收藏
页码:1037 / 1052
页数:16
相关论文
共 39 条
[1]   Rheology as a tool for evaluation of melt processability of innovative dosage forms [J].
Aho, Johanna ;
Boetker, Johan P. ;
Baldursdottir, Stefania ;
Rantanen, Jukka .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2015, 494 (02) :623-642
[2]  
[Anonymous], INT J PHARM
[3]   Permeability Description by Characteristic Length, Tortuosity, Constriction and Porosity [J].
Berg, Carl Fredrik .
TRANSPORT IN POROUS MEDIA, 2014, 103 (03) :381-400
[4]  
Boetker J, 2016, EUR J PHARM SCI
[5]  
Boetker J, 2016, ASIAN J PHARM SCI
[6]   Accuracy prediction in fused deposition modeling [J].
Boschetto, A. ;
Bottini, L. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2014, 73 (5-8) :913-928
[7]   Optical Properties of 3D Printable Plastics in the THz Regime and their Application for 3D Printed THz Optics [J].
Busch, S. F. ;
Weidenbach, M. ;
Fey, M. ;
Schaefer, F. ;
Probst, T. ;
Koch, M. .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2014, 35 (12) :993-997
[8]  
Colombo, 2000, Pharm Sci Technol Today, V3, P198, DOI 10.1016/S1461-5347(00)00269-8
[9]  
Darcy H., 1856, The Public Fountains of the City of Dijon
[10]  
Desai PM, 2016, J PHARM SCI, V105, P1