Explicit version of Beilinson's theorem for the modular curve X1 (N)

被引:12
作者
Brunault, Francois [1 ]
机构
[1] Ecole Normale Super Lyon, UMPA, F-69364 Lyon 07, France
关键词
D O I
10.1016/j.crma.2006.09.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We state an explicit version of Beilinson's theorem for the modular curve X-1 (N). We deduce from it, for any elliptic curve E of prime conductor N, a formula giving L(E, 2) in terms of the twisted values L(E, chi, 1), where X is a character modulo N. We illustrate this result and its consequences in the case of the elliptic curve E = X-1(11).
引用
收藏
页码:505 / 510
页数:6
相关论文
共 14 条
[1]  
BEILINSON AA, 1984, SOVREMENNYE PROBLEMY, V24, P181
[2]  
Bertin MJ, 2004, J REINE ANGEW MATH, V569, P175
[3]   Mahler's measure and special values of L-functions [J].
Boyd, DW .
EXPERIMENTAL MATHEMATICS, 1998, 7 (01) :37-82
[4]  
BRUNAULT F, 2005, THESIS U PARIS
[5]  
BRUNAULT F, 2006, B SOC MATH FRANCE
[7]  
Diamond F., 1995, CMS C P, P39
[8]   Numerical verification of Beilinson's conjecture for K2 of hyperelliptic curves [J].
Dokchitser, T ;
de Jeu, R ;
Zagier, D .
COMPOSITIO MATHEMATICA, 2006, 142 (02) :339-373
[9]  
ilinson, 1986, CONT MATH, V55, P1
[10]  
Kubert D. S., 1981, Grundlehren der Mathematischen Wissenschaften, V244