Gas diffusion layer for proton exchange membrane fuel cells-A review

被引:441
|
作者
Cindrella, L. [1 ,2 ]
Kannan, A. M. [1 ]
Lin, J. F. [1 ]
Saminathan, K. [1 ]
Ho, Y. [3 ]
Lin, C. W. [4 ]
Wertz, J. [5 ]
机构
[1] Arizona State Univ, Dept Engn Technol, Fuel Cell Res Lab, Mesa, AZ 85212 USA
[2] Natl Inst Technol, Dept Chem, Tiruchirappalli 620015, Tamil Nadu, India
[3] Asia Univ, Coll Hlth Sci, Dept Biotechnol, Taichung 41354, Taiwan
[4] Natl Yunlin Univ Sci & Technol, Dept Chem Engn, Yunlin 640, Taiwan
[5] Hollingsworth & Vose Co, AK Nicholson Res Lab, W Groton, MA 01472 USA
关键词
Gas diffusion layer; Hydrophobicity; Porosity; Water management; Gas permeability; Proton exchange membrane fuel cell; LIQUID WATER TRANSPORT; MICRO-POROUS LAYER; SOLID-POLYMER-ELECTROLYTE; POROSITY DISTRIBUTION VARIATION; PREDICTING CONTACT RESISTANCE; SERPENTINE FLOW-FIELDS; COMPOSITE CARBON-BLACK; NEUTRON IMAGING PART; MASS-TRANSPORT; 2-PHASE FLOW;
D O I
10.1016/j.jpowsour.2009.04.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Gas diffusion layer (GDL) is one of the critical components acting both as the functional as well as the support structure for membrane-electrode assembly in the proton exchange membrane fuel cell (PEMFC). The role of the GDL is very significant in the H-2/air PEM fuel cell to make it commercially viable. A bibliometric analysis of the publications on the GDLs since 1992 shows a total of 400+ publications (>140 papers in the journal of Power Sources alone) and reveals an exponential growth due to reasons that PEMFC promises a lot of potential as the future energy source for varied applications and hence its vital component GDL requires due innovative analysis and research. This paper is an attempt to pool together the published work on the GDLs and also to review the essential properties of the GDLs, the method of achieving each one of them, their characterization and the current status and future directions. The optimization of the functional properties of the GDLs is possible only by understanding the role of its key parameters such as structure. porosity, hydrophobicity, hydrophilicity, gas permeability, transport properties, water management and the surface morphology. This paper discusses them in detail to provide an insight into the structural parts that make the GDLs and also the processes that occur in the GDLs under service conditions and the characteristic properties. The required balance in the properties of the GDLs to facilitate the counter current flow of the gas and water is highlighted through its characteristics. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:146 / 160
页数:15
相关论文
共 50 条
  • [41] Effects of pore size gradient in the substrate of a gas diffusion layer on the performance of a proton exchange membrane fuel cell
    Oh, Hwanyeong
    Park, Jaeman
    Min, Kyoungdoug
    Lee, Eunsook
    Jyoung, Jy-Young
    APPLIED ENERGY, 2015, 149 : 186 - 193
  • [42] Progress of gas diffusion layer for proton exchage membrane fuel cells
    Wang, XL
    Zhang, HM
    Zhang, JL
    Xu, HF
    Yi, BL
    PROGRESS IN CHEMISTRY, 2006, 18 (04) : 507 - 513
  • [43] Study of substrate-free microporous layer of proton exchange membrane fuel cells
    Wang, Manli
    Hou, Ming
    Gao, Yanyan
    Chen, Haiping
    Lv, Bo
    Song, Wei
    Shao, Zhigang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (07) : 9782 - 9793
  • [44] WATER VAPOR TRANSPORT WITH CONDENSATION IN A GAS DIFFUSION LAYER OF A PROTON EXCHANGE MEMBRANE FUEL CELL
    Tan, Zetao
    Jia, Li
    Zhang, Zhuqian
    HEAT TRANSFER RESEARCH, 2012, 43 (02) : 139 - 150
  • [46] Three segments distribution of gas diffusion layer porosity in a proton exchange membrane fuel cell
    Yu, Rui Jiao
    Guo, Hang
    Chen, Hao
    Ye, Fang
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 928
  • [47] A novel hydrophilic-modified gas diffusion layer for proton exchange membrane fuel cells operating in low humidification
    Liu, Zhicheng
    Zhou, Li
    Gao, Yanyan
    Qi, Manman
    Chen, Haiping
    Hou, Ming
    Shao, Zhigang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (11) : 16874 - 16883
  • [48] A fractal analytical model for the permeabilities of fibrous gas diffusion layer in proton exchange membrane fuel cells
    Xiao, Boqi
    Fan, Jintu
    Ding, Feng
    ELECTROCHIMICA ACTA, 2014, 134 : 222 - 231
  • [49] Effect of polytetrafluoroethylene distribution in the gas diffusion layer on water flooding in proton exchange membrane fuel cells
    Song, Wei
    Yu, Hongmei
    Shao, Zhigang
    Yi, Baolian
    Lin, Jin
    Liu, Na
    CHINESE JOURNAL OF CATALYSIS, 2014, 35 (04) : 468 - 473
  • [50] Study on preparation process and durability of gas diffusion layer of proton exchange membrane fuel cell
    Li, Tianya
    Zhou, Ke
    Lin, Guangyi
    IONICS, 2022, 28 (03) : 1387 - 1401