Effect of H2O on the combustion characteristics and interactions of blended coals in O2/H2O/CO2 atmosphere

被引:10
|
作者
Ma, Lun [1 ]
Chen, Xinke [1 ]
Yu, Shenghui [1 ]
Fang, Qingyan [1 ]
Zhang, Cheng [1 ]
Chen, Gang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Blended coal; Oxy-fuel; Water vapour; Combustion interactions; OXY-FUEL COMBUSTION; DROP TUBE FURNACE; PULVERIZED-COAL; IGNITION; BURNOUT; BOILER; STEAM;
D O I
10.1016/j.joei.2020.09.006
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Blending coal combustion technology is commonly used in coal-fired power stations, and the combustion interactions (i.e., the ignition promotion and burnout inhibition) during blended coal combustion affect their combustion characteristics. The combustion interactions under conventional air-fuel condition have been well studied. Oxy-fuel firing considerably differs from air-fuel combustion and the combustion interactions of blended coals in O-2/CO2 atmospheres have been investigated in our previous research. However, the H2O concentration in actual oxy-fuel condition is relatively high, which may influence the combustion interactions. This study further investigates the effect of H2O on the combustion characteristics and interactions of blended coals in O-2/H2O/CO2 atmospheres. The results show that adding H2O into the oxy-fuel atmosphere remarkably affects the combustion characteristics with the more notable ignition delay, faster burnout and better comprehensive combustion characteristics (CCI). In addition, the presence of H2O strengthens the ignition promotion, the burnout inhibition and the comprehensive interactions, resulting in the more obvious non-additive behaviors of CCI. In O-2/H2O/CO2 mixtures, enhancing the H2O/CO2 ratio slightly strengthens the ignition promotion, the burnout inhibition, and the comprehensive interactions, which increases the non-additive behaviors of CCI. Furthermore, both of increasing O-2/H2O or O-2/CO2 ratios significantly weaken the ignition promotion, strengthen the burnout inhibition and the comprehensive interactions, which increases the non-additive behaviors of CCI. The findings shed light on the interaction effects observed during blended coal combustion in O-2/H2O/CO2 mixtures, which can provide useful information to improve the combustion characteristics of the blended coals in the real oxy-fuel atmospheres. (C) 2020 Energy Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:222 / 232
页数:11
相关论文
共 50 条
  • [21] Chemical Effect of H2O on CH4 Oxidation during Combustion in O2/H2O Environments
    Hong, Dikun
    Liu, Liang
    Huang, Yu
    Zheng, Chuguang
    Guo, Xin
    ENERGY & FUELS, 2016, 30 (10) : 8491 - 8498
  • [22] Structures and binding energies of O2-•H2O and O2•H2O
    Bell, AJ
    Wright, TG
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (18) : 4385 - 4390
  • [23] Study on the effect of H2O on the formation of CO in the counterflow diffusion flame of H2/CO syngas in O2/H2O
    Wang, Pengxiang
    Guo, Tingting
    Xu, Huanhuan
    Zhao, Yijun
    Meng, Shun
    Feng, Dongdong
    Sun, Shaozeng
    FUEL, 2018, 234 : 516 - 525
  • [24] The crystal structure of MoO2(O2)(H2O)•H2O
    Reid, Joel W.
    Kaduk, James A.
    Matei, Lidia
    POWDER DIFFRACTION, 2019, 34 (01) : 44 - 49
  • [25] The reactions of FeO with O3, H2, H2O, O2 and CO2
    Rollason, RJ
    Plane, JMC
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (10) : 2335 - 2343
  • [26] Passivation of iron by oxidation in H2O and O2/H2O mixtures
    Roosendaal, SJ
    Bakker, JPR
    Vredenberg, AM
    Habraken, FHPM
    SURFACE SCIENCE, 2001, 494 (03) : 197 - 205
  • [27] Ignition and combustion of aluminum particles in shocked H2O/O2/Ar and CO2/O2/Ar mixtures
    Servaites, J
    Krier, H
    Melcher, JC
    Burton, RL
    COMBUSTION AND FLAME, 2001, 125 (1-2) : 1040 - 1054
  • [28] Review on thermal conversion characteristics of coal in O2/H2O atmosphere
    Deng, Lihua
    Zhao, Yijun
    Sun, Shaozeng
    Feng, Dongdong
    Zhang, Wenda
    FUEL PROCESSING TECHNOLOGY, 2022, 232
  • [29] Effects of CO2/H2O on the characteristics of chars prepared in CO2/H2O/N2 atmospheres
    Qing Mengxia
    Su Sheng
    Gao Jian
    Sun Zhijun
    Xu Kai
    Xu Jun
    Hu Song
    Wang Yi
    Xiang Jun
    FUEL PROCESSING TECHNOLOGY, 2018, 173 : 262 - 269
  • [30] Quantification of O2 formation during UV photolysis of water ice: H2O and H2O:CO2 ices
    Bulak, M.
    Paardekooper, D. M.
    Fedoseev, G.
    Chuang, K-J
    van Scheltinga, J. Terwisscha
    Eistrup, C.
    Linnartz, H.
    ASTRONOMY & ASTROPHYSICS, 2022, 657