Embeddings of shearlet coorbit spaces into Sobolev spaces

被引:4
作者
Fuhr, Hartmut [1 ]
Koch, Rene [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math, D-52056 Aachen, Germany
关键词
Shearlet coorbit spaces; embeddings; Sobolev spaces; decomposition spaces; INTEGRABLE GROUP-REPRESENTATIONS; BANACH-SPACES; DECOMPOSITION; RESOLUTION; WAVELETS;
D O I
10.1142/S0219691320400032
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We investigate the existence of embeddings of shearlet coorbit spaces associated to weighted mixed L-p-spaces into classical Sobolev spaces in dimension three by using the description of coorbit spaces as decomposition spaces. This different perspective on these spaces enables the application of embedding results that allow the complete characterization of embeddings for certain integrability exponents, and thus provides access to a deeper understanding of the smoothness properties of coorbit spaces, and of the influence of the choice of shearlet groups on these properties. We give a detailed analysis, identifying which features of the dilation groups have an influence on the embedding behavior, and which do not. Our results also allow to comment on the validity of the interpretation of shearlet coorbit spaces as smoothness spaces.
引用
收藏
页数:38
相关论文
共 31 条
[1]  
Alberti G.S., 2017, Frames and other bases in abstract and function spaces, P127
[2]   Wavelets from square-integrable representations [J].
Bernier, D ;
Taylor, KF .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :594-608
[3]   Frame decomposition of decomposition spaces [J].
Borup, Lasse ;
Nielsen, Morten .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2007, 13 (01) :39-70
[4]   A classification of anisotropic Besov spaces [J].
Cheshmavar, Jahangir ;
Fuehr, Hartmut .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 49 (03) :863-896
[5]   Shearlet coorbit spaces: traces and embeddings in higher dimensions [J].
Dahlke, Stephan ;
Haeuser, Soeren ;
Steidl, Gabriele ;
Teschke, Gerd .
MONATSHEFTE FUR MATHEMATIK, 2013, 169 (01) :15-32
[6]   COORBIT SPACE THEORY FOR THE TOEPLITZ SHEARLET TRANSFORM [J].
Dahlke, Stephan ;
Haeuser, Soeren ;
Teschke, Gerd .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2012, 10 (04)
[7]   Shearlet Coorbit Spaces: Compactly Supported Analyzing Shearlets, Traces and Embeddings [J].
Dahlke, Stephan ;
Steidl, Gabriele ;
Teschke, Gerd .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (06) :1232-1255
[8]   The Continuous Shearlet Transform in Arbitrary Space Dimensions [J].
Dahlke, Stephan ;
Steidl, Gabriele ;
Teschke, Gerd .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2010, 16 (03) :340-364
[9]   Shearlet coorbit spaces and associated Banach frames [J].
Dahlke, Stephan ;
Kutyniok, Gitta ;
Steidl, Gabriele ;
Teschke, Gerd .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (02) :195-214
[10]   BANACH-SPACES OF DISTRIBUTIONS DEFINED BY DECOMPOSITION METHODS .1. [J].
FEICHTINGER, HG ;
GROBNER, P .
MATHEMATISCHE NACHRICHTEN, 1985, 123 :97-120