New lower bound for centered L2-discrepancy of four-level U-type designs

被引:25
作者
Elsawah, A. M. [1 ,2 ]
Qin, Hong [1 ]
机构
[1] Cent China Normal Univ, Dept Stat, Wuhan 430079, Peoples R China
[2] Zagazig Univ, Fac Sci, Dept Math, Zagazig, Egypt
基金
中国国家自然科学基金;
关键词
Uniform designs; U-type designs; Centered L-2-discrepancy; Lower bounds; UNIFORM DESIGNS;
D O I
10.1016/j.spl.2014.06.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new lower bound of the centered L-2-discrepancy for four-level U-type designs is obtained. Our new lower bound is sharper and valid for a lot of designs more than other existing lower bound, which is a useful complement to the lower bounds of discrepancies. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 11 条
  • [1] Bates RA, 1996, J ROY STAT SOC B MET, V58, P77
  • [2] Some new lower bounds to centered and wrap-round L2-discrepancies
    Chatterjee, Kashinath
    Li, Zhaohai
    Qin, Hong
    [J]. STATISTICS & PROBABILITY LETTERS, 2012, 82 (07) : 1367 - 1373
  • [3] Fang K.-T., 1994, Number-theoretic methods in statistics
  • [4] Lower bounds of various criteria in experimental designs
    Fang, Kai-Tai
    Tang, Yu
    Yin, Hanxing
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (01) : 184 - 195
  • [5] Fang KT, 2006, MATH COMPUT, V75, P859, DOI 10.1090/S0025-5718-05-01806-5
  • [6] A connection between uniformity and aberration in regular fractions of two-level factorials
    Fang, KT
    Mukerjee, R
    [J]. BIOMETRIKA, 2000, 87 (01) : 193 - 198
  • [7] Lower bounds for centered and wrap-around L2-discrepancies and construction of uniform designs by threshold accepting
    Fang, KT
    Lu, X
    Winker, P
    [J]. JOURNAL OF COMPLEXITY, 2003, 19 (05) : 692 - 711
  • [8] Fang KT, 2002, MONTE CARLO QUASI MO
  • [9] Hellekalek P., 1998, LECT NOTES STAT, P109, DOI [DOI 10.1007/978-1-4612-1702-2_3, 10.1007/978-1-4612-1702-2_3]
  • [10] A generalized discrepancy and quadrature error bound
    Hickernell, FJ
    [J]. MATHEMATICS OF COMPUTATION, 1998, 67 (221) : 299 - 322