Microwave-Assisted Synthesis of Highly-Crumpled, Few-Layered Graphene and Nitrogen-Doped Graphene for Use as High-Performance Electrodes in Capacitive Deionization

被引:70
作者
Amiri, Ahmad [1 ]
Ahmadi, Goodarz [2 ]
Shanbedi, Mehdi [3 ]
Savari, Maryam [4 ]
Kazi, S. N. [1 ]
Chew, B. T. [1 ]
机构
[1] Univ Malaya, Dept Mech Engn, Kuala Lumpur, Malaysia
[2] Clarkson Univ, Dept Mech & Aeronaut Engn, Potsdam, NY 13699 USA
[3] Ferdowsi Univ Mashhad, Fac Engn, Dept Chem Engn, Mashhad, Iran
[4] Univ Malaya, Fac Comp Sci & Informat Technol, Kuala Lumpur, Malaysia
关键词
OXYGEN REDUCTION; FACILE SYNTHESIS; METAL NITRIDE; DESALINATION; OXIDE; NANOPARTICLES; MEMBRANE; ENERGY; SITES; LEVEL;
D O I
10.1038/srep17503
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Capacitive deionization (CDI) is a promising procedure for removing various charged ionic species from brackish water. The performance of graphene-based material in capacitive deionization is lower than the expectation of the industry, so highly-crumpled, few-layered graphene (HCG) and highly-crumpled nitrogen-doped graphene (HCNDG) with high surface area have been introduced as promising candidates for CDI electrodes. Thus, HCG and HCNDG were prepared by exfoliation of graphite in the presence of liquid-phase, microwave-assisted methods. An industrially-scalable, cost-effective, and simple approach was employed to synthesize HCG and HCNDG, resulting in few-layered graphene and nitrogen-doped graphene with large specific surface area. Then, HCG and HCNDG were utilized for manufacturing a new class of carbon nanostructure-based electrodes for use in large-scale CDI equipment. The electrosorption results indicated that both the HCG and HCNDG have fairly large specific surface areas, indicating their huge potential for capacitive deionization applications.
引用
收藏
页数:13
相关论文
共 42 条
[1]   Vibrational spectroscopy at electrolyte/electrode interfaces with graphene gratings [J].
Bie, Ya-Qing ;
Horng, Jason ;
Shi, Zhiwen ;
Ju, Long ;
Zhou, Qin ;
Zettl, Alex ;
Yu, Dapeng ;
Wang, Feng .
NATURE COMMUNICATIONS, 2015, 6
[2]   Amphiphilic poly(acrylonitrile)-co-poly(2-dimethylamino)ethyl methacrylate conetwork-based anion exchange membrane for water desalination [J].
Chatterjee, Uma ;
Jewrajka, Suresh K. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (22) :8396-8406
[3]   Water Desalination across Nanoporous Graphene [J].
Cohen-Tanugi, David ;
Grossman, Jeffrey C. .
NANO LETTERS, 2012, 12 (07) :3602-3608
[4]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[5]   Changes in the electronic structure and properties of graphene induced by molecular charge-transfer [J].
Das, Barun ;
Voggu, Rakesh ;
Rout, Chandra Sekhar ;
Rao, C. N. R. .
CHEMICAL COMMUNICATIONS, 2008, (41) :5155-5157
[6]   The Future of Seawater Desalination: Energy, Technology, and the Environment [J].
Elimelech, Menachem ;
Phillip, William A. .
SCIENCE, 2011, 333 (6043) :712-717
[7]   Enhancing Electrocatalytic Oxygen Reduction on Nitrogen-Doped Graphene by Active Sites Implantation [J].
Feng, Leiyu ;
Yang, Lanqin ;
Huang, Zujing ;
Luo, Jingyang ;
Li, Mu ;
Wang, Dongbo ;
Chen, Yinguang .
SCIENTIFIC REPORTS, 2013, 3
[8]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[9]   Growth confined by the nitrogen source: Synthesis of pure metal nitride nanoparticles in mesoporous graphitic carbon nitride [J].
Fischer, Anna ;
Antonietti, Markus ;
Thomas, Arne .
ADVANCED MATERIALS, 2007, 19 (02) :264-+
[10]   Synthesis of Ternary Metal Nitride Nanoparticles Using Mesoporous Carbon Nitride as Reactive Template [J].
Fischer, Anna ;
Mueller, Jens Oliver ;
Antonietti, Markus ;
Thomas, Arne .
ACS NANO, 2008, 2 (12) :2489-2496