Low-Temperature Atomic Layer Deposition of CuSbS2 for Thin-Film Photovoltaics

被引:56
作者
Riha, Shannon C. [1 ]
Koegel, Alexandra A. [1 ]
Emery, Jonathan D. [2 ,4 ]
Pellin, Michael J. [3 ,4 ]
Martinson, Alex B. F. [3 ,4 ]
机构
[1] Univ Wisconsin, Dept Chem, Stevens Point, WI 54481 USA
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA
[4] Argonne Natl Lab, Argonne Northwestern Solar Energy Res ANSER Ctr, 9700 S Cass Ave, Argonne, IL 60439 USA
关键词
copper antimony sulfide; CuSbS2; thin film; atomic layer deposition; photovoltaics; thin-film solar cell; ternary metal sulfide; COPPER-ANTIMONY-SULFIDE; CU(IN; GA)SE-2; SOLAR-CELLS; ABSORBER MATERIAL; HIGH-EFFICIENCY; 20.8-PERCENT; NANOCRYSTALS; 21.7-PERCENT; FABRICATION; CONVERSION; PROGRESS;
D O I
10.1021/acsami.6b13033
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Copper antimony sulfide (CuSbS2) has been gaining traction as an earth-abundant absorber for thin-film photovoltaics given its near ideal band gap for solar energy conversion (similar to 1.5 eV), large absorption coefficient (>10(4) cm(-1)), and elemental abundance. Through careful in situ analysis of the deposition conditions, a low-temperature route to CuSbS2 thin films via atomic layer deposition has been developed. After a short (15 min) postprocess anneal at 225 degrees C, the ALD-grown CuSbS2 films were crystalline with micron-sized grains, exhibited a band gap of 1.6 eV and an absorption coefficient >10(4) cm(-1), as well as a hole concentration of 10(15) cm(-3). Finally, the ALD-grown CuSbS2 films were paired with ALD-grown TiO2 to form a photovoltaic device. This photovoltaic device architecture represents one of a very limited number of Cd-free CuSbS2 PV device stacks reported to date, and it is the first to demonstrate an open-circuit voltage on par with CuSbS2/CdS heterojunction PV devices. While far from optimized, this work demonstrates the potential for ALD-grown CuSbS2 thin films in environmentally benign photovoltaics.
引用
收藏
页码:4667 / 4673
页数:7
相关论文
共 39 条
[1]  
[Anonymous], 2014, BEST RES CELL EFF
[2]   Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition [J].
Bakke, Jonathan R. ;
Pickrahn, Katie L. ;
Brennan, Thomas P. ;
Bent, Stacey F. .
NANOSCALE, 2011, 3 (09) :3482-3508
[3]  
Bernechea M, 2016, NAT PHOTONICS, V10, P521, DOI [10.1038/NPHOTON.2016.108, 10.1038/nphoton.2016.108]
[4]   THE DESIGN AND FABRICATION OF THIN-FILM CDS-CU2S CELLS OF 9.15-PERCENT CONVERSION EFFICIENCY [J].
BRAGAGNOLO, JA ;
BARNETT, AM ;
PHILLIPS, JE ;
HALL, RB ;
ROTHWARF, A ;
MEAKIN, JD .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1980, 27 (04) :645-651
[5]   Efficient hole transport layers with widely tunable work function for deep HOMO level organic solar cells [J].
Cheng, Jiaqi ;
Xie, Fengxian ;
Liu, Yongsheng ;
Sha, Wei E. I. ;
Li, Xinchen ;
Yang, Yang ;
Choy, Wallace C. H. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (47) :23955-23963
[6]  
Contreras MA, 1999, PROG PHOTOVOLTAICS, V7, P311, DOI 10.1002/(SICI)1099-159X(199907/08)7:4<311::AID-PIP274>3.0.CO
[7]  
2-G
[8]   Atomic Layer Deposition of Metal Sulfide Materials [J].
Dasgupta, Neil P. ;
Meng, Xiangbo ;
Elam, Jeffrey W. ;
Martinson, Alex B. F. .
ACCOUNTS OF CHEMICAL RESEARCH, 2015, 48 (02) :341-348
[9]   Design of an atomic layer deposition reactor for hydrogen sulfide compatibility [J].
Dasgupta, Neil P. ;
Mack, James F. ;
Langston, Michael C. ;
Bousetta, Al ;
Prinz, Fritz B. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (04)
[10]   Recent progress in organic-inorganic hybrid solar cells [J].
Fan, Xia ;
Zhang, Mingliang ;
Wang, Xiaodong ;
Yang, Fuhua ;
Meng, Xiangmin .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (31) :8694-8709