Pluripotential theory and convex bodies

被引:14
作者
Bayraktar, T. [1 ]
Bloom, T. [2 ]
Levenberg, N. [3 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, Istanbul, Turkey
[2] Univ Toronto, Dept Math, Toronto, ON, Canada
[3] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
convex body; P-extremal function; WEIGHTED POLYNOMIALS; EQUILIBRIUM;
D O I
10.1070/SM8893
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A seminal paper by Berman and Boucksom exploited ideas from complex geometry to analyze the asymptotics of spaces of holomorphic sections of tensor powers of certain line bundles L over compact, complex manifolds as the power grows. This yielded results on weighted polynomial spaces in weighted pluripotential theory in C-d. Here, motivated by a recent paper by the first author on random sparse polynomials, we work in the setting of weighted pluripotential theory arising from polynomials associated to a convex body in (R+)(d). These classes of polynomials need not occur as sections of tensor powers of a line bundle L over a compact, complex manifold. We follow the approach of Berman and Boucksom to obtain analogous results.
引用
收藏
页码:352 / 384
页数:33
相关论文
共 16 条
[1]  
[Anonymous], 1997, LOGARITHMIC POTENTIA, DOI DOI 10.1007/978-3-662-03329-6
[2]   Zero Distribution of Random Sparse Polynomials [J].
Bayraktar, Turgay .
MICHIGAN MATHEMATICAL JOURNAL, 2017, 66 (02) :389-419
[3]   PLURISUBHARMONIC-FUNCTIONS WITH LOGARITHMIC SINGULARITIES [J].
BEDFORD, E ;
TAYLOR, BA .
ANNALES DE L INSTITUT FOURIER, 1988, 38 (04) :133-171
[4]   Fekete points and convergence towards equilibrium measures on complex manifolds [J].
Berman, Robert ;
Boucksom, Sebastien ;
Nystrom, David Witt .
ACTA MATHEMATICA, 2011, 207 (01) :1-27
[5]   Growth of balls of holomorphic sections and energy at equilibrium [J].
Berman, Robert ;
Boucksom, Sebastien .
INVENTIONES MATHEMATICAE, 2010, 181 (02) :337-394
[6]   Bergman Kernels for Weighted Polynomials and Weighted Equilibrium Measures of Cn [J].
Berman, Robert J. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (04) :1921-1946
[7]   On the Convergence of Optimal Measures [J].
Bloom, T. ;
Bos, L. ;
Levenberg, N. ;
Waldron, S. .
CONSTRUCTIVE APPROXIMATION, 2010, 32 (01) :159-179
[8]  
Bloom T, 2015, DOLOMIT RES NOTES AP, V8, P75
[9]  
Bloom T, 2009, T AM MATH SOC, V361, P2163
[10]   Bernstein-Walsh Theory Associated to Convex Bodies and Applications to Multivariate Approximation Theory [J].
Bos, L. ;
Levenberg, N. .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2018, 18 (02) :361-388