Boundary Feedback Stabilization of Kirchhoff-Type Timoshenko System

被引:6
作者
Wu, Yuhu [1 ]
Xue, Xiaoping [2 ]
机构
[1] Harbin Univ Sci & Technol, Dept Math, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Timoshenko system; Boundary control; Asymptotic behavior; Energy decay rate; EXPONENTIAL STABILITY; MEMORY-TYPE; GLOBAL EXISTENCE; ENERGY DECAY; BEAM; THERMOELASTICITY;
D O I
10.1007/s10883-014-9229-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, the stabilization problem of the nonlinear vibrating Timoshenko systems of Kirchhoff-type with boundary control conditions is considered. By virtue of the multiplier method, the explicit energy decay rates for solutions of the system are established, depending on boundary control feedback. In the view of control, the result of this work implies that, by choosing suited feedback boundary controls, the Kirchhoff-type Timoshenko system can be achieved by various decay rates, not only exponential and polynomial.
引用
收藏
页码:523 / 538
页数:16
相关论文
共 33 条
[1]   Stabilization of a nonlinear Timoshenko beam [J].
Aassila, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2002, 53 (05) :747-768
[2]   Energy decay for Timoshenko systems of memory type [J].
Ammar-Khodja, F ;
Benabdallah, A ;
Rivera, JEM ;
Racke, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (01) :82-115
[3]   Stabilization of the nonuniform Timoshenko beam [J].
Ammar-Khodja, Farid ;
Kerbal, Sebti ;
Soufyane, Abdelaziz .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) :525-538
[4]  
[Anonymous], 2002, ABSTR APPL ANAL
[5]  
[Anonymous], 1883, VORLESUNGEN MECHANIK
[6]   Decay of the timoshenko beam with thermal effect and memory boundary conditions [J].
Aouadi, M. ;
Soufyane, A. .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2013, 19 (01) :33-46
[7]   Controllability of the Kirchhoff system for beams as a limit of the Mindlin-Timoshenko system [J].
Araruna, F. D. ;
Zuazua, E. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) :1909-1938
[8]   Exponential stabilization of the Timoshenko system by a thermo-viscoelastic damping [J].
Djebabla, A. ;
Tatar, N. .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2010, 16 (02) :189-210
[9]   BOUNDARY CONTROL OF THE TIMOSHENKO BEAM [J].
KIM, JU ;
RENARDY, Y .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1987, 25 (06) :1417-1429
[10]   Adaptive stabilization of Kirchhoff's non-linear strings by boundary displacement feedback [J].
Kobayashi, Toshihiro ;
Sakamoto, Tetsuzo .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (10) :1209-1221