Gauge theory and the division algebras

被引:16
|
作者
Figueroa-O'Farrill, JM [1 ]
机构
[1] Queen Mary Univ London, Dept Phys, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
gauge theory; division algebra;
D O I
10.1016/S0393-0440(99)00028-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel formulation of the instanton equations in eight-dimensional Yang-Mills theory. This formulation reveals these equations as the last member of a series of gauge-theoretical equations associated with the real division algebras, including flatness in dimension 2 and (anti-)self-duality in 4. Using this formulation we prove that (in flat space) these equations can be understood in terms of moment maps on the space of connections and the moduli space of solutions is obtained via a generalised symplectic quotient: a Kahler quotient in dimension 2, a hyperkahler quotient in dimension 4 and an octonionic Kahler quotient in dimension 8. One can extend these equations to curved space: whereas the two-dimensional equations make sense on any surface, and the four-dimensional equations make sense on an arbitrary oriented manifold, the eight-dimensional equations only make sense for manifolds whose holonomy is contained in Spin(7). The interpretation of the equations in terms of moment maps further constraints the manifolds: the surface must be oriented, the 4-manifold must be hyperkahler and the 8-manifold must be flat. (C) 1999 Elsevier Science B.V. ALI right reserved. Subj. Class.: Quantum field theory 1991 MSC: 81T13.
引用
收藏
页码:227 / 240
页数:14
相关论文
共 50 条
  • [21] Unparticles in gauge theory
    Kozlov, G. A.
    PHYSICS OF PARTICLES AND NUCLEI, 2010, 41 (06) : 954 - 956
  • [22] Gauge Theory of Finance?
    Sornette, D
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (03): : 505 - 508
  • [23] Supersoluble crossed product criterion for division algebras
    Ebrahimian, R
    Kiani, D
    Mahdavi-Hezavehi, M
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 145 (1) : 325 - 331
  • [24] SIMULTANEOUS EMBEDDINGS OF FINITE DIMENSIONAL DIVISION ALGEBRAS
    Rowen, Louis
    Saltman, David
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (03) : 737 - 744
  • [25] Special forms of two symbols are division algebras
    Roberto Aravire
    Bill Jacob
    manuscripta mathematica, 2002, 108 : 139 - 162
  • [26] Division algebras of prime degree with infinite genus
    Sergey V. Tikhonov
    Proceedings of the Steklov Institute of Mathematics, 2016, 292 : 256 - 259
  • [27] SK1 of graded division algebras
    R. Hazrat
    A. R. Wadsworth
    Israel Journal of Mathematics, 2011, 183 : 117 - 163
  • [28] Decomposition of involutions on inertially split division algebras
    Morandi, PJ
    Sethuraman, BA
    MATHEMATISCHE ZEITSCHRIFT, 2000, 235 (01) : 195 - 212
  • [29] Supersoluble crossed product criterion for division algebras
    R. Ebrahimian
    D. Kiani
    M. Mahdavi-Hezavehi
    Israel Journal of Mathematics, 2005, 145 : 325 - 331
  • [30] Decomposition of involutions on inertially split division algebras
    P.J. Morandi
    B.A. Sethuraman
    Mathematische Zeitschrift, 2000, 235 : 195 - 212