PHASELESS INVERSE SCATTERING PROBLEMS IN THREE DIMENSIONS

被引:83
作者
Klibanov, Michael V. [1 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
关键词
inverse scattering problems without the phase information; uniqueness theorems; finding complex zeros; X-RAY; RETRIEVAL; RECONSTRUCTION; MODULUS; REGULARIZATION; OBSTACLES; EQUATION;
D O I
10.1137/130926250
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Three-dimensional inverse scattering problems in the frequency domain are considered in the case when only the modulus of the scattered field is given, while the phase is unknown. Uniqueness theorems are proved.
引用
收藏
页码:392 / 410
页数:19
相关论文
共 39 条
[1]   Inverse problem on the line without phase information [J].
Aktosun, T ;
Sacks, PE .
INVERSE PROBLEMS, 1998, 14 (02) :211-224
[2]  
[Anonymous], 1985, Appl. Math. Sci.
[3]  
Beilina L., 2012, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, DOI DOI 10.1007/978-1-4419-7805-9
[4]   Statistical Analysis of Phase-Inversion Neutron Specular Reflectivity [J].
Berk, N. F. ;
Majkrzak, C. F. .
LANGMUIR, 2009, 25 (07) :4132-4144
[5]  
Bukhgeim A., 2000, Introduction to the Theory of Inverse Problems
[6]  
Bukhgeim A L., 1981, Soviet Mathematics Doklady, V24, P244
[7]  
Colwell Peter., 1985, Blaschke products. Bounded analytic functions
[8]   Local regularization for the nonlinear inverse autoconvolution problem [J].
Dai, Zhewei ;
Lamm, Patricia K. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) :832-868
[9]   PHASE RECONSTRUCTION VIA NONLINEAR LEAST-SQUARES [J].
DOBSON, DC .
INVERSE PROBLEMS, 1992, 8 (04) :541-557
[10]   Phase retrieval algorithms: a personal tour [J].
Fienup, James R. .
APPLIED OPTICS, 2013, 52 (01) :45-56