Global Stability for a Binary Reaction-Diffusion Lotka-Volterra Model with Ratio-Dependent Functional Response

被引:3
作者
Capone, Florinda [1 ]
De Luca, Roberta [1 ]
机构
[1] Univ Naples Federico II, Complesso Univ Monte S Angelo, Dept Math & Applicat R Caccioppoli, Via Cinzia, I-80126 Naples, Italy
关键词
Predator-prey; Ratio-dependent; Global stability; PREDATOR-PREY MODEL; QUALITATIVE-ANALYSIS; DYNAMICS; SYSTEM;
D O I
10.1007/s10440-014-9900-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A reaction-diffusion system modeling the predation between two species is analyzed in the case in which the predators have to search, share and compete for food. The boundedness and uniqueness of the solutions is proved and conditions guaranteeing the global nonlinear asymptotic stability of the positive equilibrium point have been found. These conditions improve those ones present in the existing literature.
引用
收藏
页码:151 / 163
页数:13
相关论文
共 23 条
[11]   Positive periodic solutions for a neutral delay ratio-dependent predator-prey model with a Holling type II functional response [J].
Liu, Guirong ;
Yan, Jurang .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) :3252-3260
[12]   On the Dynamics of an Impulsive Reaction-Diffusion Predator-Prey System with Ratio-Dependent Functional Response [J].
Liu, Zijian ;
Zhong, Shouming ;
Yin, Chun ;
Chen, Wufan .
ACTA APPLICANDAE MATHEMATICAE, 2011, 115 (03) :329-349
[13]   SEMILINEAR PARABOLIC PROBLEMS DEFINE SEMIFLOWS ON CK SPACES [J].
MORA, X .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 278 (01) :21-55
[14]   Qualitative analysis on a diffusive prey-predator model with ratio-dependent functional response [J].
Peng Rui ;
Wang MingXin .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (11) :2043-2058
[15]   Qualitative analysis on a diffusive and ratio-dependent predator-prey model [J].
Peng, Rui .
IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (03) :566-586
[16]   A note on a diffusive predator-prey model and its steady-state system [J].
Peng, Rui ;
Wang, Ming Xin ;
Yang, Guo Ying .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (05) :963-974
[17]  
Protter M.H., 1967, MAXIMUM PRINCIPLE DI
[19]   On an ill-posed problem in nonlinear heat conduction [J].
Rionero, S ;
Torcicollo, I .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (1-2) :173-186
[20]  
Rionero S., 2005, Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei. Matematica e Applicazioni, V16, P227