Global Stability for a Binary Reaction-Diffusion Lotka-Volterra Model with Ratio-Dependent Functional Response

被引:3
作者
Capone, Florinda [1 ]
De Luca, Roberta [1 ]
机构
[1] Univ Naples Federico II, Complesso Univ Monte S Angelo, Dept Math & Applicat R Caccioppoli, Via Cinzia, I-80126 Naples, Italy
关键词
Predator-prey; Ratio-dependent; Global stability; PREDATOR-PREY MODEL; QUALITATIVE-ANALYSIS; DYNAMICS; SYSTEM;
D O I
10.1007/s10440-014-9900-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A reaction-diffusion system modeling the predation between two species is analyzed in the case in which the predators have to search, share and compete for food. The boundedness and uniqueness of the solutions is proved and conditions guaranteeing the global nonlinear asymptotic stability of the positive equilibrium point have been found. These conditions improve those ones present in the existing literature.
引用
收藏
页码:151 / 163
页数:13
相关论文
共 23 条
[1]  
[Anonymous], 1997, SPRINGER TEXTS APPL
[2]   On the nonlinear stability of an epidemic SEIR reaction-diffusion model [J].
Capone F. ;
de Cataldis V. ;
de Luca R. .
Ricerche di Matematica, 2013, 62 (1) :161-181
[3]   Inertia effect on the onset of convection in rotating porous layers via the "auxiliary system method" [J].
Capone, F. ;
Rionero, S. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2013, 57 :192-200
[4]   On the stability of non-autonomous perturbed Lotka-Volterra models [J].
Capone, F. ;
De Luca, R. ;
Rionero, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (12) :6868-6881
[5]  
Capone F., 2008, MEMORIE ACCADEMIA SC, P73
[6]  
Capone F., 2008, P WASCOM 2007 14 C W, P96
[8]  
De Angelis M., 2013, NONLINEAR DYN SYST T, V13, P217